
Universität Ulm | 89069 Ulm | Germany Faculty of
Engineering
and Computer Science
Institute of Media Informatics

Fakultät für
Ingenieurwissenschaften
und Informatik
Institut für Medieninformatik

Modality-independent Exchange
of Information Across Devices
Using the Pick-and-Drop Concept
Master thesis at the University of Ulm
Masterarbeit an der Universität Ulm

Submitted by/Vorgelegt von:
Michael Barth
michael.barth@uni-ulm.de

Examiner/Gutachter:
Prof. Dr. Michael Weber
Prof. Dr. Enrico Rukzio

Adviser/Betreuer:
Dipl.-Inf. Frank Honold

2013

„Modality-independent Exchange of Information Across Devices Using the Pick-and-Drop Concept“
Copy from September 13, 2013

ACKNOWLEDGEMENTS/DANKSAGUNGEN:

This work would not have been possible without the advice and support of many people.

First and foremost, I wish to express my gratitude to Prof. Dr. Michael Weber and my adviser Frank
Honold for providing me the opportunity for this project. I especially wish to thank my adsiver for
offering his invaluable guidance throughout this project and for taking special care to keep me
motivated during its stressful last stages. I am also grateful to Prof. Dr. Enrico Rukzio for offering his
knowledge and guidance on the topic at the early stages.

Special thanks go to the many research associates who sacrified their time to evaluate this work and
enrich it with their valuable feedback.

I also like to express my gratitiude to Christian Seitzer and Miriam Klement for proofreading my work
and adding their honest opinions.

My deepest thanks go to my family for their undivided support and affection. Thanks for always
being there!

As usual, the best has been saved for last: I wish to thank the most precious person to me,
Alexandra Klement, for her continuous love, support and positive attitude that seems to be
unquenchable. Also, thank you for finding the time to proofread my work as well! ;-)

This work was created utilising free software
Bei der Erstellung dieser Masterarbeit wurde freie Software eingesetzt:

Typeset/Satz: PDF-LATEX 2ε
Printing/Druck: Kommunikations- und Informationszentrum (kiz), Universität Ulm

c© 2013 Michael Barth

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Objective . 3

1.4 Approach . 3

1.5 Outline . 4

2 Fundamentals 5

2.1 Interaction Fundamentals . 5

2.1.1 Human-Computer Interaction . 5

2.1.2 Common Input & Output Concepts . 6

Input Concepts . 7

Output Concepts . 7

2.1.3 Related Interaction Concepts . 8

Cut, Copy, and Paste . 8

The Clipboard . 8

Drag & Drop . 9

Pick-and-Drop . 9

Gestures . 10

2.1.4 Ubiquitous Computing . 11

2.2 Multimodal User Interfaces . 12

2.2.1 Architectural Overview . 12

Fusion . 14

Dialog Management . 14

Fission . 14

Context Management . 14

Advantages . 15

iii

Contents

2.2.2 State of the Art in Multimodal Interaction Technology 15

Adaptable User Interfaces . 15

Migratory User Interfaces . 16

Model-based User Interface Generation 16

Differentiation . 17

2.2.3 Existing System . 19

Architectural Overview . 19

SEMAINE API . 20

3 Interaction Concept 23

3.1 Scope . 23

3.1.1 Objectives . 24

3.1.2 Requirements . 25

3.1.3 Limitations . 26

3.2 Scenario . 27

3.3 Metamorph Interaction Concept . 30

3.3.1 Basic Concept . 30

Abstract Interaction Concept . 30

Data Transfer Mode . 36

Nominators . 37

3.3.2 Abstract Components . 37

3.3.3 Concrete Components . 39

Voice User Interface (VUI) . 43

Multimodal User Interfaces . 43

3.3.4 Modality Mappings . 43

3.3.5 Feedback . 46

3.3.6 Transitions . 48

3.4 Paper Prototype . 54

3.4.1 Procedure . 55

3.4.2 Results . 57

3.5 Interim Conclusion . 59

iv

Contents

4 Prototypical Implementation 61

4.1 Existing System . 62

4.1.1 User Interface . 62

Dialog & Interaction Output . 62

Dialog & Interaction Input . 63

SEMAINE Components . 64

4.1.2 Extending the Existing System . 64

Audio Support . 65

Grid View . 65

Mouse Gesture Support . 66

Dialog & Interaction Input . 67

4.2 System Design . 67

4.2.1 Synchronisation . 68

4.2.2 Storage . 70

4.2.3 Metamorph Runtime . 70

4.2.4 Interaction . 70

4.2.5 Graphical User Interface (GUI) . 72

4.2.6 Voice User Interface (VUI) . 73

4.2.7 Summary . 73

4.3 Implementation . 74

4.3.1 Synchronisation . 75

4.3.2 Storage . 76

4.3.3 Interaction . 79

Action Trigger . 81

4.3.4 The Dock Concept for Graphical User Interfaces 82

Extending the Dialog and Interaction Output for Pick-and-Drop 82

4.4 Interim Conclusion . 84

5 Evaluation 87

5.1 Participants . 87

5.2 Test Setup . 87

5.3 Procedure . 88

5.4 Statements of the Experts . 89

5.4.1 Visibility . 90

v

Contents

5.4.2 Multimodality . 93

5.4.3 Transient Media Types . 94

5.4.4 Hierarchical Information . 95

5.4.5 Dynamic Nominators . 95

5.4.6 Interaction . 97

5.4.7 Generally Important Aspects . 97

5.4.8 Extending the Interaction Output . 98

5.5 Interim Conclusion . 99

6 Summary and Future Work 101

A Class Diagrams 103

B Tables 109

Bibliography 115

Picture Credits 123

vi

1 Introduction

This work serves as master thesis in the field of human-computer interaction. Its focus lies

in the realisation of a modality-independent interaction concept based on the Pick-and-Drop

concept [Rek97] in a model-based approach.

This chapter starts by stating the motivation behind the topic, elaborates on the problem

this thesis aims to solve, describes the approach that has been taken and finally outlines

the structure of this document.

1.1 Motivation

The diversity and ubiquity of computing devices that surround us is increasing steadily, as

is the number of devices people use in their daily lifes [Wei95, Seb09]. There are dozens

of different types of computational devices that come in diverse shapes, sizes and with a

varying set of features. These devices range from classical desktop computers to laptops,

netbooks, tablets, smartphones, (multi-)touch tables, high-definition televisions (HDTVs)

and gaming consoles.

With the ever-growing diversity of devices, the input and output modalities also diversified.

In human-computer interaction, the term modality can be described either as “a sense

through which the human can receive the output of the computer (for example, vision

modality)” or as “a sensor or device through which the computer can receive the input from

the human” [Wik13e]. In short, the term describes a method of communication between

a human and a computational device in the field of human-computer interaction. When

talking about modalities, it is sometimes necessary to distinguish between the definition of

humans receiving output from the computer, which will be called output modalities, and

inputs that the computer receives from the human, which will be called input modalities

henceforth.

1

1 Introduction

Although keyboard and mouse are the dominant method of interaction with desktop com-

puters, there exists a number of other input modalities that have prospered – especially

on other devices. For example, touch screens and gestures are very popular nowadays

on smartphones, but speech input is also slowly gaining more ground [Ram03, ZNK10].

Today’s software has to adapt to and utilise these diversified device features and modalities

to make the most use of this ubiquitous computing environment.

1.2 Problem Statement

Despite this manifold diversity of devices and features, interaction between the involved

devices is most often limited and inconvenient. Even the simple exchange of information

between two similar devices, like computers on the same desk, is unnecessarily cumber-

some [Rek97], let alone transferring information between fundamentally different devices.

Furthermore, a straight exchange of information is more constrictive than it needs to be and

not always exactly what fits the user’s needs. For example, different device features may

necessitate a change of the information’s representation. Like when the device features

required for a certain form of rendering are not available – e.g. speakers for an audio file.

Other times, using another type of modality might increase usability or be more practical for

the intended use of the information – e.g. when following a manual, it is more useful to hear

the instructions while following them instead of interrupting the task at hand every time to

read and memorise the next step, then execute it.

To fully utilise all the possibilities of a ubiquitous computing environment, the interactions

with and the information stored on computational devices have to become more flexible and

adaptable. This applies to the presentation of the information as well. A smoother, more

comfortable interaction has to focuses on the user’s task, not on the limits and methods of

interaction enforced by the devices, the software or the representation of the information.

The following work is based on an existing prototypical system that utilises a model-based

approach to user interface generation at runtime. This allows the flexible and dynamic

adaption of the user interface to the context of use. To our knowledge, a drag-&-drop-like

interaction has never been adapted to a model-based user interface, allowing the content

to adapt to the context of use as well.

2

1.3 Objective

1.3 Objective

This work aims to develop an interaction concept that enables an easy and spontaneous

exchange of information across multiple devices, allowing the user to freely switch between

input as well as output modalities, while performing a drag-&-drop-like interaction with the

information objects. Furthermore, a prototypical implementation of the interaction con-

cept that extends an existing system will be developed and evaluated to gain insight and

feedback on the feasibility and usability of the proposed interaction concept, to learn what

works well and what can be improved. The drag-&-drop-like interaction will be adapted to

the model-based approach of the existing system.

1.4 Approach

First, a research on the current state of the art on available input & output modalities and

methods of interaction is done to get a better understanding of today’s possibilities and

limits. Afterwards, an interaction concept for the exchange of information across device

borders, inspired by Rekimotos Pick-and-Drop [Rek97], is developed that utilises the most

effective and proven interaction methods for all prevalent modalities in use nowadays. The

chosen methods of interaction represent the best practices and insight gained in other

works. It is a fusion of the state of the art to offer the most fitting ways to realise a drag-&-

drop-like interaction for a model-based multimodal user interface.

The core of the interaction concept will be the conversion from concrete, modality-specific

representations of information to an abstract, modality-independent information and vice

versa. This conversion is applied when picking an information object up on one device,

using one specific modality available on that device, and then dropping it onto another

device, potentially utilising another modality. As an example, picking up a book on an

eBook reader and dropping it on a TV screen to watch the corresponding movie. This will be

illustrated using scenarios showing possible use cases for this concept. To demonstrate this

and gain some actual feedback on the concept, a prototype is implemented and evaluated.

3

1 Introduction

1.5 Outline

This work is structured into six chapters. The first chapter introduces the reader to this

work, outlining it by stating the motivation, problem and objective. Following this, the funda-

mentals upon which this work is built are briefly introduced in chapter 2. They are divided

into two broad fields: Interaction fundamentals and multimodal user interfaces. The exist-

ing system is briefly introduced as an example of a multimodal user interface at the end of

chapter 2.

Having the basics covered, the main body is started by chapter 3 which describes the in-

teraction concept on an abstract and concrete level in theory as well as explaining some

identified problems. Chapter 4 details the prototypical implementation, illustrating its archi-

tecture and integration into the existing system. Finally, an expert evaluation that has been

conducted is elaborated in chapter 5.

Concluding, a summary of this work is given in chapter 6 with suggestions for future work.

4

2 Fundamentals

This chapter aims to introduce the two fundamentals upon which this work is based: Inter-

action fundamentals and multimodal user interfaces. Many different disciplines are com-

bined under the term ‘interaction’ in the context of computational devices. They are de-

scribed in the first section of the chapter at hand. The second section elaborates on mul-

timodal user interfaces, their typical architectures, the current state of the art in this field,

design principles, and finally introduces the existing (multimodal) system which this work

extends.

2.1 Interaction Fundamentals

This section summarises the history of human-computer interaction (HCI), common input

and output concepts necessary to enable any interaction with computers at all, common

interaction concepts that developed over time, like drag & drop, and how all of this affects

the coming age of ubiquitous computing.

2.1.1 Human-Computer Interaction

The concepts of HCI were, most of the time, first developed at universities and then refined

by corporate research before they made their way into consumer products. This includes

the concept of direct manipulation of graphical objects using a pointing device, which was

first demonstrated by Ivan Sutherland in his doctoral dissertation in 1963. [Mye98]

Later in 1968, a research project at the Massachusetts Institute of Technology (MIT) fea-

tured iconic representations and gesture recognition. Using these concepts they realised

dynamic menus with item selection utilising a pointing device and selection of icons by

pointing. David Canfield Smith coined the term “icon” later in his doctoral thesis in 1975

and popularised them as one of the chief designers of the Xerox Star. [Mye98]

5

2 Fundamentals

Today’s computer systems are unthinkable without these basic concepts and they have

been used more and more in the computer systems of the last 20 years. Graphical user

interfaces (GUIs) that feature directly manipulable graphical objects and overlapping win-

dows, which have been first proposed by Alan Kay in his 1969 doctoral thesis [Mye98], are

the de facto standard currently.

The first trainable gesture recognition was realised by Warren Teitelman in 1964. At this

time, it was common for light-pen-based systems to feature gesture recognition. It also

has been used in commercial CAD systems since the 1970s, came to common notice

with the Apple Newton in 1992, and is heavily utilised with touch-based technologies like

smartphones nowadays.

The earliest approaches to automatic speech recognition (ASR) have been made 1967 and

were based on finding speech sounds and providing appropriate labels to these sounds.

Later in 1975, the first pattern matching approach was developed, which introduced the

idea of pattern training. According to [AK10], “the pattern-matching approach has become

the predominant method for speech recognition in the last six decades”. Recently, ASR

has become more commonly used in consumer products with the introduction of Siri on the

Apple iPhone 4S. Siri offers a natural language UI “to answer questions, make recommen-

dations, and perform actions by delegating requests to a set of Web services” [Wik13f].

A quote from Brad Myers [Mye98] shall conclude this section: “As computers perform faster,

more of the processing power is being devoted to the user interface. The interfaces of

the future will use gesture recognition, speech recognition, “intelligent agents”, adaptive

interfaces, video, and many other technologies now being investigated by research groups

at universities and corporate labs. Therefore, it is imperative that university, corporate, and

government-supported research continue and be well-supported, so that we can develop

the science and technology needed for the user interfaces of the future.”

2.1.2 Common Input & Output Concepts

With the proliferation of computational devices and the advances made in human-computer

interaction, the input and output concepts have also diversified. The most common input

and output concepts will be introduced in this section. This is important to make appropriate

choices in HCI design. [ZNK10]

6

2.1 Interaction Fundamentals

Input Concepts

Keyboard and mouse are still one of the most prevalent input concepts, being used to oper-

ate most computers today – be it desktop machines or laptops. For mobile and ubiquitous

computing, however, they represent rather constraining and limited interaction concepts

[SDD12]. With the progress made on touch screens, touch input has mostly replaced

pen-based input on mobile devices and is more popular nowadays, since almost all smart-

phones and tablets come with touch screens.

Gestures have become popular with the proliferation of touch input. They are mostly used

in conjunction with touch input as it feels more natural to use them with fingers than to use

them with a mouse [SDD12]. The Microsoft Kinect popularised motion sensing and body

gestures in video games, but is mostly used in research otherwise. ASR is utilised more on

mobile devices than on desktop PCs, with Apple’s Siri being the prime example. Although

operating systems like Windows also support speech input, it is seldom used there.

In the remainder, this work will consider the mouse, keyboard, touch, gestures (subdivided

into mouse and touch gestures) and ASR as potential input concepts.

Output Concepts

The traditional five senses of the human organism are sight, hearing, smelling, tasting and

touching [Seb09]. Smelling and tasting have rather limited uses in human-computer inter-

action and are thus not considered. Tactile or haptic feedback is used in some specialised

cases, like vibrations on smartphones or force feedback joysticks in games. Due to its

limited, specialised nature it is also not considered in this work.

The visual channel is one of the most powerful senses to receive and transfer information,

as the saying “A picture is worth a thousand words” already implies. Text and pictures are

examples of the media that can be perceived through the visual channel. It is especially

strong at communicating spatial information. The auditive channel can be used to com-

municate information through language and meaning through sound. Humans naturally

relate certain things with specific sounds, like the ding-dong sound a doorbell makes or the

well-known sound when an error occurs in Windows. Such sounds are sometimes called

auditory icons or earcons. Hearing can also be used to infer spatial information or direction,

but this is more difficult than using the visual channel.

7

2 Fundamentals

Together, the visual and aural channel form the most powerful combination to communicate

information to a user. Videos, a combination of pictures with audio, communicate informa-

tion on two different channels at the same time, combining meaning with spatial information.

These two output concepts are considered in this work for system feedback.

2.1.3 Related Interaction Concepts

Throughout the history of HCI, some common concepts were developed that are used on

many platforms and operating systems, like the cut/copy and paste operations, the clip-

board, drag & drop, or gestures. There is also a lesser-known specialisation of drag & drop

called Pick-and-Drop [Rek97]. These concepts are introduced in the following subsections

as they are related to this work.

Cut, Copy, and Paste

Cut, copy, and paste are interface metaphors borrowed from manuscript editing, where text

was edited by cutting it with a scissor and pasting it on a paper to create a page layout. In

computer systems, copy and paste or cut and paste are operations used to transfer text,

data, files or objects from a source to a destination. For cut and paste operations, the data

is removed from its source location and moved to the destination, whereas copy creates a

duplicate of the data at the destination. [Wik13b]

To allow this, a clipboard is used as temporary data storage. This interaction technique is

closely related to GUIs and drag & drop. [Wik13b]

The Clipboard

The clipboard is a short-term data storage that is used to transfer data between locations

and applications on most computational devices. This is done by utilising the cut, copy and

paste operations. The clipboard is mostly used in conjunction with GUI applications and

implemented as a hidden temporary data buffer. [Wik13a]

It uses the natural metaphor of a clipboard where you can temporarily clip on documents

and remove them later on.

8

2.1 Interaction Fundamentals

Drag & Drop

In GUIs, drag & drop is the concept of “grabbing” a virtual object and dragging it to a new

location where it will be dropped. This is done using a pointing device and is an example of

direct manipulation of a graphical object (the icon most of the time). [Wik13c]

The dragged object can be dropped in the same window, a different window, in an applica-

tion or on another icon (representing a program that is able to handle the dropped object).

For example, the icon of an image file can be dragged using the mouse and dropped upon

the icon of an image viewer application, which then opens and displays the image file.

[Wik13c]

Drag & drop is a common concept that is utilised in many, but not all, applications. It is a

fast and easy-to-learn technique. Its usability may be degraded by lacking visibility of what

can be dragged or dropped upon and lack of immediate feedback. [Wik13c, WCO95]

It bears similarities to the clipboard and the cut/copy and paste operations, since drag &

drop is also used to transfer data from a source to a destination location, using a temporary

buffer to store the data while it is being dragged.

Pick-and-Drop

This work is based on the Pick-and-Drop technique, which itself is an enhancement of

drag & drop. In 1997 Rekimoto described drag & drop and its problems as follows:

“With the traditional drag-and-drop technique, a user first “grabs” an object by

pressing a mouse button on it, then “drags” it towards a desired position on

the screen with the mouse button depressed, and “drops” it on that location by

releasing the button. This technique is highly suitable for a mouse and widely

used in today’s graphical applications.

However, simply applying the drag-and-drop to pen user interfaces presents a

problem. It is rather difficult to drag an object with a pen while keep [sic] the pen

tip contacted on the display surface. It is often the case that a user accidentally

drops an object during the drag operation, especially when dragging over a

large display surface.” [Rek97]

As Rekimoto notes, this technique does not translate well to pen input. In fact, it does

not translate at all to a number of other input modalities like keyboard-only input, voice

9

2 Fundamentals

input and body gestures. Traditional drag & drop is clearly optimised for use with computer

mouses, where the object can be dragged by comfortably holding down the mouse button

while moving.

Although it is possible to drag & drop with touch input reasonably well – disregarding the

problem of accidentally losing contact to the touch surface while moving larger distances (as

has been noted by Rekimoto for pen input as well) – it becomes a problem when dragging

objects across device borders, for example from one touch screen to another. [SSRG12,

SSR13]

Pick-and-Drop proposes to solve this by replacing the drag action with the pick action: The

user picks up an object by tapping it with the pen tip and then lifting the pen from the screen.

The pen then “holds” the object, although in fact it is stored on a server and the pen is just

used for user identification. This is similar to a clipboard and a cut & paste operation. The

user can then move around freely and as soon as the tip of the pen comes close enough

to another screen, a shadow of the picked up object appears at the cursor to indicate that

it still holds the object. When the user then taps on the screen, the object is dropped.

This metaphor feels very natural, as it is similar to a person picking up an object, holding

it while moving around in the physical world and then finally dropping it someplace else at

the desired location. Therefore, the Pick-and-Drop concept was chosen as a basis for this

interaction concept.

Gestures

Gesture recognition is a wide field that is commonly used to denote recognition of body and

hand gestures, which is also the case in this work. Typically, cameras are used to capture

body motion and touch screens are used to capture finger movements. Mathematical al-

gorithms then try to recognise predetermined gestures which in turn trigger some kind of

reaction on the computational device. [PKH08]

Gestures are a way to enrich current user interfaces to allow humans a more natural way of

interaction with computers. Furthermore, they allow the development of new hardware and

interaction concepts, such as touch screens, stereo cameras, wired gloves or even holo-

graphic displays that require no computer monitor, keyboard or mouse. [PKH08, WLD08,

SDD12]

10

2.1 Interaction Fundamentals

There are still many challenges, like the need for robust recognition algorithms, the handling

of false positives when gestures are triggered by accident, the limitation to one source of

input signal (e.g. body or hand) [SDD12] and usability issues like the visibility of gestures.

When the set of available gestures is not visible, the user is left to guess or required to

learn the gestures in order to use them. This is not intuitive and affects the ease of use of

gesture input concepts, which may pose a serious problem for end users.

2.1.4 Ubiquitous Computing

“The most profound technologies are those that disappear. They weave them-

selves into the fabric of everyday life until they are indistinguishable from it.”

— Mark Weiser [Wei95]

This opening sentence of Mark Weiser from his article “The Computer for the 21st Century”

describes the idea of ubiquitous computing very well. Ubiquitous computing describes a

computing concept that allows human-computer interaction to occur everywhere, anytime,

using any device without the user realising that he is using a computational device. For

example, it allows the user to move from room to room without interrupting her interactive

session with a computational device [BB00].

Ubiquitous computing relies on a variety of devices in different sizes that communicate with

each other using different kinds of network adapters for short and long range communica-

tion and a support for different kinds of input and output concepts that fit the context. But

the technological aspects are not the point of ubiquitous computing. The point is that these

technologies seamlessly integrate themselves into the user’s environment and seemingly

disappear, leaving only the user and the goal he wants to achieve. [Wei95]

Additionally, “users should not be required to go to a special place (i.e. the desktop) to in-

teract with the computer. Nor should they be required to wear special devices or markers to

have the computer know where they are.” [BB00] According to Brumitt et al., the computer

needs to be aware of the physical world, based on a geometric model, to make appropriate

decisions when selecting the device(s) to use. Otherwise, when computers do not possess

a comprehension of the physical world, the proliferation of smart devices will lead to an

increase of the complexity in the user’s experience instead of simplifying it. [BB00]

11

2 Fundamentals

The same is true for the input and output modalities utilised. Since mobile devices are

changing locations frequently [BB00], adaptions to their surroundings are necessary to

avoid the utilisation of improper modalities like speech input in a loud environment. This

also requires certain knowledge of the physical world by the device and would benefit by

knowledge about the user to make smart choices.

Another point touched upon by Brumitt et al. is the extensibility of the system, being able to

grow automatically when new devices and capabilities are added [BB00]. This is similar to

distributed computing, where the structure is not known in advance and may change during

runtime.

2.2 Multimodal User Interfaces

A multimodal user interface (MUI) is defined by Oviatt as follows [Ovi03]:

“Multimodal interfaces process two or more combined user input modes (such

as speech, pen, touch, manual gesture, gaze, and head and body movements)

in a coordinated manner with multimedia system output. They are a new class

of interfaces that [. . .] incorporate one or more recognition-based technologies

(e.g. speech, pen, vision).”

It is noteworthy that Oviatt calls the combination of output modalities “multimedia system

output”. In this work it will be called multimodal output for reasons of consistency.

A MUI represents a paradigm shift away from deterministic unimodal GUIs to probabilistic

systems that started back in 1980 with Bolt’s “Put That There” demonstration system. Bolt’s

system allowed users to create and move objects in a 2D GUI by combining speech in

parallel with touchpad input [Bol80]. There has been great progress in the last decade in

terms of hardware and software concerning MUIs with the proliferation of mobile devices

like smartphones or tablets.

2.2.1 Architectural Overview

Compared to regular GUIs, there are quite some differences between them and MUIs,

which is summarised in table 2.1.

12

2.2 Multimodal User Interfaces

GUI MUI

Single input stream Multiple input streams

Atomic, deterministic Continuous, probabilistic

Sequential processing Parallel processing

Centralised architectures Distributed & time-sensitive architectures

Table 2.1: The differences betweeen GUIs and MUIs in juxtaposition. [DLO09]

In MUIs, different modalities can be used and combined for user input and output. This

is a contrast to the deterministic input of GUIs, like mouse position or characters typed

with a keyboard, where there is a single input that can be determined with absolute confi-

dence. The multiple input streams in a MUI, on the other hand, have to be first interpreted

by probabilistic recognisers and thus their results contain a certain degree of uncertainty.

[Ovi03, DLO09]

Figure 2.1 illustrates the general architecture of a multimodal system. The orange-colored

components introduced in the illustration are explained in the following sections.

Figure 2.1: The general architecture of a typical multimodal system according to [HSW+13,
DLO09].

13

2 Fundamentals

Fusion

The individual results of the input recognisers have to be combined in a sensible way and

mapped to a semantic representation, which is done by a component called the fusion

engine. There are some challenges when mapping the inputs, since the input events are not

always clearly temporarily delimited and there are other cases where temporal coincidence

does not mean that these inputs are related to one another. [Ovi03, DLO09]

Moreover, uncertainty has to be taken into consideration when mapping the input results.

However, the ability to provide different inputs for the same intended semantic representa-

tion adds robustness through redundancy, e.g. pointing at a selection and saying its name.

Dialog Management

When the inputs have been consolidated and semantically mapped by the fusion engine,

they are typically sent to a component called the dialog manager. A dialog manager is

responsible for the state and flow of a user interaction. Its purpose is to control the dialog

between the user and computer so the user can achieve his goal.

When the dialog manager receives the semantic representations by the fusion, it identifies

the current dialog state, executes the corresponding transitions based on the input and

returns a message to the fission. [DLO09, HSW+13]

Fission

The fission is responsible to communicate the message received from the dialog manager

to the user. It reasons about the most adequate modality or combination of modalities to

communicate the message. This transforms the message from a modality-independent

into a modality-specific representation. To do this, the fission customarily incorporates

additional information about the environment, user and context. [DLO09, HSW12]

Context Management

A context manager is in charge of tracking things like the location, context and user profile

for the fusion, dialog management and fission. This enables these three components to

make smart, adequate decisions based upon this knowledge. [DLO09, HSW+13]

14

2.2 Multimodal User Interfaces

Advantages

MUIs aim to allow users a more “human” way of interacting with a computational system,

since humans naturally support their communication with bodily gestures and facial ex-

pressions when talking to one another. They support more flexible, efficient and expressive

means in HCI and are expected to be easier to learn and use [Ovi03].

But, as has been shown in studies, task completion time is only sped up by 10% and should

not be considered the main advantage of MUIs [DLO09]. However, MUIs offer better relia-

bility than other HCI techniques and bring more robustness to an interface [DLO09, Seb09].

It has been shown that users made 36% fewer errors when using MUIs compared to uni-

modal systems [DLO09]. MUIs also allow a more graceful recovery from errors through

the ability to switch the input modality when an erroneous input was made. This are all

user-centered reasons for error avoidance. There are system-centered reasons for supe-

rior error handling as well: “A well-designed multimodal architecture with two semantically

rich input modes can support mututal disambiguation of input signals.” [Ovi03]

Finally, MUIs offer a choice of modality and allow the consideration of user preferences. For

these reasons, most users prefer multimodal interaction over unimodal interaction [DLO09].

Moreover, choice of modality becomes important when certain modalities are ill suited or

inappropriate for a certain task or environment, like keyboard input for drawing something,

speech input in a library or for people with special limitations.

2.2.2 State of the Art in Multimodal Interaction Technology

Current research on multimodal user interfaces, like adaptable UIs, migratory UIs and

model-based UI generation will be briefly introduced in this section. This is the current

state of the art and represents topics that are related to this work.

Adaptable User Interfaces

Adaptive and customisable UIs use modelling and reasoning about the problem domain,

the task and the user in order to better support the user in achieving his goal. “The goal of

such systems is to adapt their interface to a specific user, give feedback about the user’s

knowledge, and predict the user’s future behavior such as answers, goals, preferences, and

15

2 Fundamentals

actions." [Seb09] Adaptive HCI promises to support more sophisticated and natural input

and output that enables users to perform potentially complex tasks faster, with greater

accuracy and to improve user satisfaction.

It is believed that this has a great potential for improving the effectiveness of HCI, therefore

playing a major role in multimodal HCI. Several studies provide empirical support that the

user performance can be increased when the UI matches the user’s skill level. But there

is also a concern that adaptive interfaces violate standard usability principles, with evi-

dence suggesting that static interface designs sometimes promote superior performance

than adaptive UIs. [Seb09]

Migratory User Interfaces

Migratory user interfaces allow users to switch devices while retaining their interaction ses-

sion. This aims to make an application follow a user from one device to another, allowing

the user to continue to work on the task he has been working on at the initial device, from

the point where he left off with any input data being preserved. [BP04]

It may also include the adaption of the UI to fit different devices using an appropriate modal-

ity and presentation. These modalities can be used alternatively, complementarily or in

another complex style of interaction [BP05]. The main reason for this is the diversity in

devices and features, like different screen sizes or interaction capabilities, which must be

considered for migratory UIs to be practical [BP04].

The time it takes for an application to migrate with its current state is crucial for usability, as

has been noted by Bandelloni et al. Although the processing load to migrate an application

with its state is heavy, users have been found to be disappointed when the migration was

not perceived as instantaneous. User disorientation may be another problem, which could

occur when the migrated UI does not resemble the initial UI. [BP04]

Model-based User Interface Generation

A model-based approach exploits one or more models as a basis to dynamically generate a

UI at runtime. This allows the system to build multi-targeting UIs, which are better adapted

to their target than premade UIs would be.

16

2.2 Multimodal User Interfaces

The models are declaratively described using device-independent markup languages and

mechanisms of abstraction. They are transformed into concrete widgets by generators as

defined by the target platform. [Vel09] Usually, specified generation rules and constraints

are considered during the UI generation, like HCI design principles [Pet10]. This is bene-

ficial for ubiquitous computing systems, since there can be no “one size that fits all” and

context-awareness is considered one of the key points [CWC05]. Using a model-based

approach can reduce the effort and complexity in creating UIs for many target platforms.

According to Vellis, model-based UIs are typically built for single-user, non-collaborative

usage and have been dealing with rather simplistic problems far away from producing pro-

fessional, fully functional applications [Vel09]. Because it is not considered mature yet,

model-based UI generation is currently not used by many interface developers and has not

been widely adopted by the industry [SGP00]. There is research on providing better nota-

tions and tools for the model-based approach [Vel09, CWC05], improving the application of

HCI principles [Pet10] and supporting advanced use cases like collaborative UIs [Vel09] or

distributed UIs [VC04].

In spite of everything, model-based UI generation is considered an important, necessary

step for software development in an ubiquituous computing era [VC04, CWC05, Vel09].

Adaptive and migratory UIs are good examples for UIs that benefit from a model-based

approach where the UI is generated at runtime.

Differentiation

To contrast this work from similar and related work, this interaction concept focuses on

the possibilities and handling of multimodal information in a modality-independent manner

across device borders.

There is existing work on cross-device interaction. Schmidt et al. [SSRG12] propose dif-

ferent interaction styles specifically tailored to mobile devices and touch screens or tables

called “surfaces”. It introduces a variation of Pick-and-Drop that uses a phone as replace-

ment for the pen to allow data exchange between phones and surfaces. Another technique

is called “PhoneCopy&Paste”. It uses the phone as a personal clipboard to manipulate

the surface’s content. Seifert et al. [SSR13] describe an approach to extend the screen

space of a mobile device by utilising external screens as an UI extension. This allows data

exchange and sharing using drag & drop across the devices.

17

2 Fundamentals

In contrast to this work, the devices are limited to mobile devices and surfaces in both works.

The focus lies on touch input; multimodal input capabilities are not considered. Also, the

drop context is not taken into account to adapt the content’s modality, it is exchanged as-

is. The focus of [SSRG12] is to allow a seamless interaction between mobile devices and

surfaces spanning device borders, similar to this work. [SSR13], however, aims to alleviate

the inconvenience inherent to small screen spaces on mobile devices. This is of no concern

for this work.

Other related work includes Pick-and-Drop by Rekimoto [Rek97], on which the interaction

concept of this work will be based. Pick-and-Drop by Rekimoto is a direct manipulation

technique that is an enhancement of drag & drop. It uses two actions, namely pick and

drop, to exchange data between devices. After picking data up, the user is free to execute

other actions or move around and switch devices, unlike in traditional drag & drop where

the drag needs to be maintained – which is impossible in most multi-device environments.

Rekimoto utilised pens that are identified by IDs to allow multiple users. Pick-and-Drop

also uses a server called the PenManager in the background, that keeps track of which

pen has currently picked up what data. The data itself is also stored on the server; the

pens themself do not store any data. This work adopts most of the concepts developed by

Rekimoto, but enhances them by removing the dependency on pens. It also enhances the

pick capabilities by advanced features like the ability to pick multiple items. Pick-and-Drop

also does support neither multimodal input nor multimodal output capabilities.

Miller and Myers already proposed a synchronised clipboard, whose contents are trans-

ferred over the network between computers [MM99]. The synchronised clipboard is hidden

from the user and unobtrusively works like a typical cut/copy and paste operation, with the

slight difference that the clipboard’s content will be automatically synchronised across all

configured computers. It uses a peer-to-peer architecture to achieve this. This work will

use and enhance this approach by adding support for multimodal input and output and ad-

vanced features like the ability to collect multiple items to cut/copy from different sources. It

will also feature a GUI and other feedback capabilities, making the hidden clipboard and its

contents visible to the user.

Another work that is based on copy and paste behaviour of users was done by Stolee et

al. with the goal of “Revealing the Copy and Paste Habits of End Users” [SER09]. Stolee

et al. identified common habitual patterns and expressed some suggestions which were

considered in the design of this interaction concept.

18

2.2 Multimodal User Interfaces

Finally, some of the proposed gestures that will be introduced later are inspired by the

boomerang technique [KI07], which allows suspending drag & drop interactions to per-

form other actions while still maintaining the drag. It also offers advanced features like

storing multiple objects and a gesture to receive the stored objects for dropping.

2.2.3 Existing System

The existing prototypical system realises a MUI, which generates its UI at runtime utilising

a model-based approach. This allows the system to adapt the UI to the user, device and

context, among other things.

Distributed
Computing

Mobile Networks
Mobile Information Access

Adaptive Applications

+
Mobile

Computing

Context-Awareness
Ad-hoc Networks

Smart Sensors & Devices

+
Ubiquitous
Computing

Intention-Awareness
A.I. Planning

Adaption by Learning

+
Companion

Systems

Figure 2.2: The evolution chain towards Companion Systems taken from [HSW12].

The system was realised as part of a Companion System. A Companion System is an

advancement of ubiquitous computing, as illustrated in figure 2.2. Companion systems aim

to adapt their behaviour to the user’s preferences, needs, capabilities, emotional state, and

situation. They possess intention-awareness, artificial intelligence planning and adaption

by learning. [HSW12]

An overview of the relevant aspects concerning this work is given in the following section.

Architectural Overview

The overall architecture of the existing system is shown in figure 2.3. As can be seen, the

fusion, dialog management and fission are located at the core of the system. Environmental

information is collected by various sensors and stored in the knowledge base.

The application core stands for the application itself which provides the functionality, like

a calendar application. Task planning represents the AI planning component that is re-

sponsible for providing a solution to given problems in the form of different tasks the user

has to execute in order to accomplish his goal. These abstract tasks are handed to the

dialog management, which in turn decomposes them into concrete and individual dialog

19

2 Fundamentals

common ground for the main characteristics needed: Future

systems and experience them as competent and empathic knowledge base

Companion System
output device
components

multimodal fusion task
planning

dialog
management

multimodal �ssion
application

core

input device
components

environment
recognition

Figure 2.3: The overall architecture of the existing system. [HSW+13]

goals. Every communicable dialog fragment is then passed as a dialog act to the fission

module. The fission assigns available modalities in a context aware manner and utilises

output device components in order to communicate the dialog to the user. The user may

then perform inputs that are captured by different input devices. The possibly multimodal

inputs are interpreted by the fusion module, which maps it to a semantic representation in

an adaptive process. This interpreted input is then handed back to the dialog management

for evaluation. [HSW+13]

SEMAINE API

The existing system uses a message-oriented middleware (MOM) called the SEMAINE API

to enable communication between components and devices in a distributed environment.

The SEMAINE API uses ActiveMQ, an open-source MOM which implements the Java Mes-

sage Service (JMS) specification. The SEMAINE API uses a publish-subscribe model

based on topics for communication: “components can publish (send) messages to a topic

or subscribe to the topic to receive messages sent to that topic. In other words, it is a

flexible mechanism for n-to-m communication. To establish a communication between two

components, it is sufficient for them to use the same topic name.” [SEM]

SEMAINE provides a system monitor, shown in figure 2.4, that displays a graph of all com-

ponents as circular nodes and the topics as rectangles, with edges between the compo-

nents and topics to indicate paths and direction of communication. The SEMAINE system

monitor can furthermore show exchanged messages for any given topic by clicking the topic

rectangle which opens a new window that displays all messages being sent on the topic.

20

2.2 Multimodal User Interfaces

Figure 2.4: The SEMAINE System Monitor providing an overview of all topics and nodes in
the system.

21

3 Interaction Concept

Multimodal user interfaces (MUIs) fit the human way of interacting better than traditional

graphical user interfaces (GUIs) since they allow an interaction style that feels more natural

to the users, are seen as being more robust in terms of error prevention and shall allow

easier and faster error correction [Ovi03, DLO09, Seb09]. To unfold their full potential,

MUIs need to support flexible and dynamic content as well as multiple interaction and dis-

play modalities that adapt to the current context of use [ZNK10]. The proposed interaction

concept aims to gain further insight into MUIs using a drag-&-drop-like interaction style to

exchange information in a multi-device environment with a model-based approach.

The theoretical concept, the prototypical implementation as proof of concept, and its evalu-

ation are the main contribution of this work and will be elaborated in the following chapter.

But before describing the interaction concept itself, the scope of the concept will be detailed

to set the framework for what shall be achieved and what is beyond the scope of this work.

Furthermore, to demonstrate its practical applicability, a scenario with some use cases is

explained before delving into the interaction concept itself in detail.

After the concept has been described, a first evaluation that has been done using a paper

prototype will be detailed. The evaluation was done in the early stages – right after the first

interaction concept draft was ready – to gain first insights, uncover hidden problems early

in the design process and to elicit oversights and forgotten necessities in the first draft. This

is elaborated on in section 3.4.

3.1 Scope

This section sets the scope for the interaction concept by defining objectives, deriving re-

quirements and detailing the limitations.

23

3 Interaction Concept

3.1.1 Objectives

The overall objective of this work is to study a modality-independent handling and presen-

tation of information and its exchange across devices using the Pick-and-Drop concept with

model-based MUIs. Such an interaction concept has several interesting points to consider,

which will be explained in the following paragraphs.

First, the information has to be stored in a modality-independent way with mappings to

modality-specific representations that supports an exchange across device borders. To

enable picking up the information from one of its different concrete representations and

dropping it somewhere else in another concrete representation, the information has to be

enriched with meta-information – to identify and define its available concrete representa-

tions. When picked up, there must be some kind of transition from its current concrete

representation to its abstract representation as shown in figure 3.1. Furthermore, when

dropping the information, there needs to be a transition from the abstract representation to

one of its concrete representations as predetermined by the drop context. This process will

be further detailed in section 3.3.1.

Figure 3.1: This illustration shows how the information transitions from one concrete repre-
sentation (png image) to another (avi video). The represented information – an
apple – stays the same. The Pick-and-Drop interaction also crosses the device
borders from a smartphone to a touch screen.

24

3.1 Scope

Second, the interaction concept needs to be realised with modality-independence in mind.

This means there needs to be a definition of what actions are offered by the interaction

concept, what states and transitions these actions entail and how these actions can be

triggered using different input modalities – or a combination of modalities. This will be based

on the prevalent input concepts and the assessment of their strengths and weaknesses

as is done in section 3.3.6 on page 48. Additionally, every feedback has to be defined for

several output modalities as well. One goal is to enable this in an extensible and flexible way

by decoupling the triggers from the actual actions they trigger by introducing an interaction

concept with two levels: An abstract, modality-independent level and a concrete, modality-

dependent level.

Third, the picked information can be dropped onto different UI components on the concrete

level – as long as those components support one of the media types offered by the picked

abstract information. According to [WCO95] drop site feedback is under utilised, but is

something that can aid users and make the system more predictable. Also, possible drop

targets are not inherently obvious by just looking at the information as an abstract concept.

For these reasons, it is necessary to identify possible drop targets and indicate them to the

user utilising the most appropriate modality available on the target device. This means the

drop-target indicator itself has to be presented in different modalities.

Last but not least, transitioning between different kinds of information representations is

not always naturally possible, depending on the source and target representation. There

are inherent ‘gaps’ in transitioning from some representations to others that have to be

identified and considered in the interaction concept.

3.1.2 Requirements

The objectives detailed in section 3.1.1 lead to the following list of requirements:

• Pick-and-Drop-like interaction with multimodal information items

◦ Description & storage of multimodal information items

◦ Ability to transition information items from concrete representation to abstract

representation and vice versa

◦ Context-sensitive drop to determine representation to use

◦ Identification & handling of problem cases with multimodal Pick-and-Drop

25

3 Interaction Concept

• Exchange of information across devices

◦ Allow other actions to be taken between pick and drop

◦ Clipboard-like concept

· Synchronised in distributed environment

· Ability to store multiple information items in clipboard

· Ability to select/deselect an item information in the clipboard

· Ability to examine current items and the selected item at any point

◦ Spontaneous change of modalities to support different devices

• Modality-independent interaction concept

◦ Abstract interaction concept that models the possible actions, states and transi-

tions decoupled from specific modalities (abstract level)

◦ Modality-dependent mappings for all supported modalities that detail what inputs

trigger which action (concrete level)

◦ Feedback (abstract and concrete level)

◦ Drop target indicators (abstract and concrete level)

3.1.3 Limitations

There are also some limits that apply to this concept, either due to technological or con-

ceptual constraints.

Since the information content does not affect the interaction concept at all, all informa-

tion content and its corresponding meta-information is pre-authored and not generated or

automatically detected, as this is not the focus of this work. Although there are known ap-

proaches for low and high-level adaption and procedural generation of content, this will be

deliberately not utilised in this work.

Furthermore, the context information will be pre-authored as well, meaning there will be

no usage of a dynamic context-sensitive determination of output modality, like an adaptive

agent or (machine) learning algorithm. Another aspect is that user skills or preferences

won’t be taken into consideration by this interaction concept.

26

3.2 Scenario

The input modalities will be limited to prevalent concepts. No concepts requiring compli-

cated fusion, like the combination of speech with pointing gestures in a “Put That There”

type of manner [Bol80] will be realised in the proof-of-concept prototype and only touched

upon in the theoretical interaction concept.

3.2 Scenario

This scenario aims to support applications based on the Ottawa Charter for health promo-

tion, first developed by the World Health Organization (WHO) in 1986. The use cases are

aimed to illustrate possible applications of the interaction concept in a context of promoting

healthy nutrition and assisting physical training. They are presented using the following

template:

Situation: <Description of the initial situation where the user wants to achieve a goal>

Proposed solution: <Description of the steps taken to achieve the goal>

Abstract information: <Notation of the concepts or things with which the user interacts>

Concrete information: <List of concrete representations that are used in the use case, in

the form of: name-of-representation (type-of-representation)>

Input modalities: <List of utilised input modalities>

Output modalities: <List of transitions the information goes through, in the form of:

source-representation→ target-representation>

Use Case I

Situation: The user is reading about the equipment necessary to do Kendo on his com-

puter. He reads about something called a “shinai" but cannot imagine what this is.

Proposed solution: The user selects the text, picks it up and drops it onto an image viewer

to have a look at it.

Abstract information: Shinai1

Concrete information: Name (atomic text), photograph (atomic image)

Input modalities: Mouse, keyboard

Output modalities: Text→ image
1A Shinai is a weapon used for practice and competition in kendo representing a japanese sword.

27

3 Interaction Concept

Use Case II

Situation: The user wants to compile a nutrition schedule on her tablet without much

writing effort or the need to research the nutrition details.

Proposed solution: The user selects the food she wants in his schedule by picking up

images of the food from a grid view and dropping it into her word processor on the computer

to print it out afterwards.

Abstract information: Foodn
2

Concrete information: Photograph (atomic image), name and nutrition details (atomic

text)

Input modalities: Touch, mouse, keyboard

Output modalities: Image→ text

Use Case III

Situation: The user is browsing a video-on-demand website on his desktop computer and

finds a movie he wants to watch later on while working out on his home trainer.

Proposed solution: The user picks up the text title or the cover image of the movie und

drops it later onto the video player of the home trainer by using its touch screen.

Abstract information: Movien

Concrete information: Title (atomic text), cover (atomic image), movie (hierarchical video

file)

Input modalities: Mouse, keyboard, touch

Output modalities: Text→ video OR image→ video

Use Case IV

Situation: The user wants to try out a new yoga technique. He finds instructions on the

yoga technique with his smartphone on the internet, but has problems following the written

instructions.

2n is an index used to denote a specific item out of a collection, like an apple out of a fruits collection.

28

3.2 Scenario

Proposed solution: The user chooses to pick up the instructions on his smartphone and

drop them on the TV with the XBox Kinect in his workout room to watch them.

Abstract information: Yoga technique

Concrete information: Website (hierarchical text), video (atomic video)

Input modalities: Touch, voice, gestures

Output modalities: Text→ video

Use Case V

Situation: The user is reading a fascinating eBook on her tablet from which it is hard to

tear yourself away, but she wants to go jog outside.

Proposed solution: The user picks up the eBook on the tablet and drops it via a voice

command onto her MP3 player, where it will be continued as an audio book on the page

the user left off.

Abstract information: Book

Concrete information: eBook (hierarchical text), audio book (hierarchical audio)

Input modalities: Touch, voice

Output modalities: Text→ audio OR text→ text-to-speech

Use Case VI

Situation: The user wants to plan a hiking trip.

Proposed solution: The user picks up the start and destination from a map on a tablet and

drops them into the corresponding text fields of a hiking planner on his PC using speech

commands. He also picks up gear he wants to take with him by using a collection of pictures

showing the relevant gear. The labels for the gear text fields adapt themselves to fit their

content. The ’start’ and ’destination’ labels, however, stay the same.

Abstract information: Travel destination(start, dest), hiking gearn

Concrete information: Locations on a map (hierarchical picture, atomic text), hiking gear

(atomic picture, atomic text)

Input modalities: Touch, voice

Output modalities: Image→ text

29

3 Interaction Concept

3.3 Metamorph Interaction Concept

This interaction concept is called Metamorph, since it seemingly morphs the information

item’s representation to fit the context of the drop target location using meta-data that de-

fines what representations to use in which context. This concept will be described in detail

in the following sections.

3.3.1 Basic Concept

The Metamorph interaction concept adopts the Pick-and-Drop approach [Rek97] to enable

a cross-device exchange of information, but removes the fixation on pen input. Metamorph

is designed to be usable and adaptable to a number of different input and output modalities,

thus extending the Pick-and-Drop technique to a general, multimodal and model-based

interaction concept.

This will be achieved by decoupling the basic actions from the actual, modality-dependent

triggers. Pick and drop as basic actions will be kept, as well as the concept of storing

the picked up objects in a clipboard-like manner. The clipboard will be queryable by using

the supported modalities and offer advanced features (as described in section 3.3.2). The

means to trigger the pick and drop actions will be fitted to the respective input modalities

(see section 3.3.4) as is the user interface feedback to the respective output modalities (see

section 3.3.5).

Abstract Interaction Concept

The abstract interaction concept describes the Metamorph interaction concept at its most

basic, modality-independent level. It represents the core of the interaction concept. To

achieve this, the most basic elements and terms that are used need to be defined first.

Table 3.1 defines the basic elements.

For convenience reasons, the information item will be abbreviated to just ‘item’ and the

Metamorph clipboard will be just called ‘clipboard’ from here on.

The clipboard shall offer up to six slots in which items can be stored. This number is based

on the work of Miller in “The Magical Number Seven, Plus or Minus Two: Some Limits

on Our Capacity for Processing Information” [Mil56]. It may be possible to have a bigger,

30

3.3 Metamorph Interaction Concept

smaller or dynamic number of slots for the clipboard, but such preferences and their impact

on usability are not the focus of this work. This could be the subject of a future work.

Element Description

Cursor The term cursor is used to denote the location designator for triggered actions. It
can be either a graphical cursor visible on the screen, like a mouse cursor, or an
invisible cursor, like when using a finger to point at something.

Pickable Marks an abstract or concrete component as valid target for pick actions.

Droppable Marks an abstract or concrete component as valid target for a drop action.

Information item An information item is anything that can be picked up and dropped using the
Metamorph interaction concept. It can range from a simple text to an image to a
video, to name a few examples. An information item is pickable.

Slot A slot represents a storage unit for a single information item. A slot is droppable.

Metamorph clipboard The Metamorph clipboard is the globally available storage for the picked up
information items, offering slots in which information items can be stored.
Although the storage itself is invisible, it is made visible through audio feedback
and GUI components that are described later.

Table 3.1: Overview of the basic elements and terms that are used to define the Metamorph
interaction concept.

This means the clipboard allows storing more than a single item at a time, opposed to

traditional clipboards that can only store a single item like the Windows clipboard or the

clipboards of most Linux distributions. Exchanging information across devices may ne-

cessitate moving larger distances between devices, depending on the device set-up and

environment. To minimise tedious movement between devices to transfer several informa-

tion items originating from devices at different locations, an activity that is rather common

according to [SER09], the decision to support multiple slots was made.

Using those elements and terms, the Metamorph interaction concept’s basic actions can be

defined as described in table 3.2. The data required to perform the corresponding actions

is also provided in the description represented as unordered n-tuples.

Concerning the required data’s meaning, the DeviceID is an identifier of the device on

which the action was triggered, the ComponentID designates the device’s UI component (a

device can have multiple UI instances running simultaneously, e.g. a GUI component, a

text-to-speech (TTS) component, etc.) and the ObjectID identifies the concrete UI object

(e.g. a text box). This 3-tuple is necessary to identify a concrete UI instance in a distributed

system.

31

3 Interaction Concept

Action Description

Pick Store the information item picked up from ObjectID in the clipboard slot with SlotID, the
next slot that is free or the slot that was least recently used.

Required data: <DeviceID, ComponentID, ObjectID, InformationID, [SlotID]>

Drop Drop the dragged information item into the designated UI object with ObjectID, initiating a
transfer of the information to a droppable UI object.

Required data: <DeviceID, ComponentID, ObjectID, InformationID>

Select Mark the information item stored in the clipboard slot identified by SlotID as selected.

Required data: <SlotID>

Deselect Unmark the information item stored in the clipboard identified by SlotID as selected.

Required data: <SlotID>

ClearSlot Clears the slot identified by SlotID by removing the information item it contains from the
clipboard. If no SlotID is given, the item in the selected slot will be removed by default.

Required data: <SlotID>

ClearUiComp
onent

Clear the source UI component with ObjectID, making the drop a cut instead of copy.

Required data: <DeviceID, ComponentID, ObjectID>

Table 3.2: Overview of the basic actions defining the Metamorph interaction concept.

The InformationID identifies the affected information item. The Cursor is a positional

information from which the ComponentID and ObjectID can be derived. To pick an object

up, most often the cursor will be used to identify the item. Consequentially, the general

purpose of the cursor is the identification of UI objects to interact with. This information

may be gained otherwise, for example by stating the name of the item using voice input

to identify it. Because of this, the cursor is not listed on those occassions. The SlotID

identifies the slot of the clipboard.

Figure 3.2 illustrates the procedure when picking up items. An item can be picked up either

using a cursor to identify the item to pick up or by directly identifying the item. To pick an

item up using the cursor, it must be placed over it. The user can then start to drag the item

around and drop it someplace he desires – either over a clipboard slot to pick it up or at

another location that supports to drop items on it. Only cursor-based techniques support

the concept of dragging an item, therefore dragging is considered a modality-specific fea-

ture and not listed in the basic actions of the Metamorph interaction concept to maintain

modality-independence. It is also possible to directly pick the item up to store it in a slot.

When an item has been picked up, it is by default automatically selected.

32

3.3 Metamorph Interaction Concept

Figure 3.2: A state diagram that illustrates the possible actions when picking up an item.

Figure 3.3: A state diagram that illustrates the possible actions causing the drop of an item.

33

3 Interaction Concept

Dropping an item is illustrated in figure 3.3. To drop an item, the user can either select

it in the clipboard and then drop it or avoid the clipboard by initiating a drop directly from

its original location to its destined location. The drop action automatically transitions the

item into the concrete representation specified by the drop target. If an item does not

possess the required representation, it cannot be dropped onto the drop target, which will

be indicated by some kind of modality-specific feedback.

Figure 3.4: This state diagram illustrates the interactions and transitions for item selection.

Figure 3.4 illustrates the transitions and states of changing the selection of items in the clip-

board and how the selection affects the drop action. Items can be selected and deselected

however the user desires by triggering the select or deselect actions. Selected items will

be indicated depending on the modality.

34

3.3 Metamorph Interaction Concept

By default, when no item is specifically designated, the drop action uses the currently se-

lected item from the clipboard. Items can also be removed from the clipboard by triggering

the remove action.

Representations of Information

Information can be communicated in different ways, depending on the ‘thing’ or concept

they represent. For a multimodal user interface, being able to choose between different

representations to represent the same ‘thing’ allows the MUI to select the best fit in a multi-

device environment to enhance the user experience.

Figure 3.5: A diagram that illustrates the two levels to describe information on a computa-
tional device and in the minds of people.

To enable this, information has to be somehow classified, structured and described by

meta-information. Figure 3.5 depicts how the conceptual idea of an apple can be repre-

sented on two different levels: The abstract level and the concrete level. All representations

stand for the same ‘thing’, although being expressed by different media representations

and being stored in different file formats on computational devices.

The abstract level resides within people’s minds and describes the apple as a general

concept: An apple is a fruit which grows on apple trees, it can be eaten, is nutritious and

is even considered to be beneficial for a person’s health. Although there exist different

kinds of apples, with different properties like taste, colour and shape, people assign all of

these different representations to the concept of an apple. Furthermore, an apple may be

35

3 Interaction Concept

represented by its name, like Granny Smith, by its conceptual name (“apple"), by photos,

drawings, people pronouncing the words “Granny Smith" or “apple", a video of an apple

and many more. All of those things are associated with the concept of an apple. This level

is inherently abstract, therefore the representation of information at this level, in style of the

Cameleon Reference Framework [VLM+04], is called the abstract representation.

The concrete level resides both within people’s minds and within the bounds of compu-

tational devices. A medium (singular of media) describes the storage and transmission

channels used to communicate information or data, meaning written text, vocalised words,

pictures, drawings, moving images or even gestures [Wik13d]. People are able to distin-

guish and identify different media easily. Also, media is heavily used by computational

devices to store information or data in different ways. There are five types of media consid-

ered by this interaction concept: Text, image, text-to-speech (TTS), audio and video. This

level limits the communication channel by concretising the representation; therefore it is

called the concrete representation.

Data Transfer Mode

There are two possible data transfer modes: Cut and copy. Depending on the context and

the user input, either one is used. According to Stolee et al. in [SER09], which explored how

end users utilise a default operating system clipboard, 45% of the interactions captured in

their study were copy operations, 52% were pastes and only 3% were cuts. For this reason,

the default action will be copy on drop.

A cut moves the data, meaning it is removed from its source location and added to the

target UI component. When it is removed, the corresponding representation of the source

information is changed accordingly, meaning it will be blank after the move (e.g. when

cutting a text from a text field, the text representation of the source information will be

changed to be blank). The target’s information representation will be changed to the moved

data. Cut, on the concrete level, is possible only when a flag called IsEditable is set to

true for the abstract source object and when it is requested by user input. The cut option

is always available for slots.

A copy creates a new identical instance of the data at the target location, meaning after

the copying is finished, the data will be present in the source as well as in the target. The

information content of the target will be changed to the copied data, whilst the source con-

36

3.3 Metamorph Interaction Concept

tent will remain unchanged. Copy is executed by default or when the source component’s

IsEditable flag is set to false since this prohibits a cut operation.

Nominators

The label that is typically placed just before a UI component to describe its content will

be called a nominator in this work. A nominator can be a GUI label or a spoken hint for

text-to-speech output.

A nominator will be overridden on a drop action when the OverrideNominator flag at

the drop target component is set to true. This may be necessary for cases where GUI

components need to adjust their semantic meaning to their content, like when dropping a

vegetable into a text field nominated as “Meat:” (due to the last item dropped there) when

collecting a list of food to compose a meal. In other cases, where the nominator gives

a new semantic meaning to the UI component, like when assigning an address as travel

destination, the nominator “Travel Destination:” should not be changed to something like

“Address:” in this example.

A cut will only remove the nominator when the OverrideNominator flag is set to true, as

the meaning of the nominator is related to the moved information data.

3.3.2 Abstract Components

The Metamorph interaction concept uses a number of components to achieve its goals.

These components follow the principles of the model-view-controller (MVC) design pattern

by separating the application into three types of components: Components handling the ap-

plication data, control and presentation. This is illustrated in figure 3.6. These components

are described in the section at hand.

Metamorph Clipboard

The Metamorph clipboard is the core component on the abstract layer that remains in the

background and connects everything. It represents the model and offers six slots for in-

formation items to be dropped on and picked up from, acting as a centralised storage that

37

3 Interaction Concept

Figure 3.6: The model-view-controller structure followed by the interaction concept.

is synchronised across all devices. The Metamorph clipboard replaces the traditional clip-

board in the Metamorph interaction concept. The other components rely on this central

storage component to display the current contents in the slots and the state of the items

in the slots, as well as their relevant meta-information like available representations on the

media level.

The clipboard itself is hidden from the user, but made visible through other components

depending on the device and interaction style.

Information Storage

The information that is handled and exchanged by the Metamorph interaction concept

needs to be stored somewhere in a centralised manner. It has to be accessible from

anywhere in the distributed environment and needs to be kept in sync on all devices

and UI components. Updates to the information need to be applied everywhere. The

InformationStorage is a model that manages, stores and synchronises the information.

Interaction Mediator

The interaction mediator models the basic actions of the abstract interaction concept (see

3.3.1 on page 30). It represents the controller that receives requests to trigger the basic

38

3.3 Metamorph Interaction Concept

actions of the interaction concept and acts as an encapsulating layer between the diverse

input modalities and the executing components. It handles requests, as defined by the

MVC, by delegating them to the responsible components that can execute these actions.

Views

One of the main advantages of the MVC pattern is the ability to freely interchange and add

new ‘views’. Although this term is typically used to denote a visual presentation, the MVC

does not limit the views to GUI representations. This is true for the Metamorph interaction

concept as well, which allows the clipboard to be represented in various different ways,

including the auditive channel. Some proposed possibilities are shown in section 3.3.3.

3.3.3 Concrete Components

In this section, concrete example components are described to give a feeling of what views

are imaginable to be realised for the interaction concept.

Metamorph Dock

The Metamorph dock is a bar at the top or bottom of the screen. It represents one possible

way of visualising the six slots offered by the clipboard that is proposed in this work. In

addition to the six slots, there are three buttons to the right side of the slots stacked upon

each other that allow to hide the dock, configure the dock settings and remove the selected

or dropped upon item (from top to bottom). See figure 3.7 for a draft of the dock, illustrating

several different states.

The dock is always visible to avoid confusion on the user side. It always shows the clip-

board’s content and what the user can do with the items in the dock, indicated by small

general media icons below the item’s name. This follows the advice on visibility given by

Donald Norman in [Nor02]. The media icons tell the user what representations are avail-

able on every slot. It may be thinkable to add a user preference that allows to auto-hide the

bar for proficient users that prefer to have more screen space, but user configurability is not

a key aspect of this work. Items that are dropped onto a slot are automatically ’selected’

according to the basic actions described in section 3.3.1 on page 30.

39

3 Interaction Concept

Figure 3.7: A concept draft of the Metamorph dock, depicting the overall basic look of the
dock and with two information items in the slots, the first being selected. The
icons below the information items indicate what representations are available.

The dock is intended to be used in computer environments that offer a little bit more screen

space, like desktop computers, laptops, touch tables or wall-mounted touch screens.

Metamorph Ring

The paper prototype in section 3.4 revealed a problem with the dock and its static position

at the top or bottom of the screen for touch tables. On horizontal screens like a touch table,

it is ambiguous what ’top’ or ’bottom’ means, as this is dependent on which side of the table

the user is standing.

40

3.3 Metamorph Interaction Concept

Apple

Keikogi

Figure 3.8: A concept draft of the Metamorph ring.

Furthermore, when multiple users want to work on a touch table in different areas, a fixed

position might be inadequate. To alleviate these problems, the Metamorph ring is proposed

as a possible solution.

The ring offers six slots for items like the dock, but in a ring shape centered on the cursors

location at the time the ring is summoned. It appears when executing some specific actions

and disappears when it loses cursor focus. The contents in the slots are in synchronisation

with the clipboard, meaning the items and their state in the slots will always be the same.

The ring allows local and efficient access to the items in the slots. One problem that remains

is the determination of what is ‘up’ or ‘down’ for a user standing before a touch table, to show

the icons and text at the correct angle. One possible solution, when the ring is summoned

by a gesture, could be to detect the user’s position by determining the angle of the gesture.

Another issue with the ring is to find suitable places for the media type icons on the ring. A

possible solution might be to place them around the slot circles.

41

3 Interaction Concept

Metamorph App

Figure 3.9: A concept draft of the Metamorph app.

Components like the dock or ring are aimed to be added to a screen that displays other

information alongside these components. Therefore, they are aimed at systems that offer

moderate to large screen space. On small screens, they claim too much screen space,

leaving no room for additional information. Furthermore, they are not optimised for small

screens. The Metamorph app is a proposed solution for small screens.

The app offers six slots in a fullscreen grid of 2x3 slots and is kept in synchronisation with

the clipboard. There is a menu from which the app settings can be accessed and a selected

item can be removed from the slots. The following components are displayed in the slots:

An icon of the item, the items name and, below the name, several small general icons.

Those small general icons indicate what representations are available for the given item.

The app is intended for devices with small screen space, like smartphones, tablets or other

mobile devices.

42

3.3 Metamorph Interaction Concept

Voice User Interface (VUI)

When no displays are available, a voice user interface (VUI) becomes necessary. Utilising

text-to-speech, the current content of a clipboard containing two items, one being selected,

could be expressed like this: “There are currently two items in the clipboard. Slot 1: Ap-

ple. Supported representations: Text, picture, video. Slot 1 is selected. Slot 2: Keikogi.

Supported representations: Picture, audio, video.”

Actions to query individual slots, the current selection specifically or a list of possible drop

targets can be realised as well utilising TTS.

Multimodal User Interfaces

A combination of GUI and VUI, where both complement each other or provide redundant

information are possible as well. A complementing UI could utilise the GUI for the basic

information that is needed most of the time, whilst the VUI provides additional in-depth

information on top of the GUI when requested. A redundant combination allows using the

GUI to gain a fast overview, while using the VUI when looking at the screen is not possible

or comfortable.

Adding acoustic sounds to actions or events might also increase the usability, like a sound

played by devices that support the currently picked item to highlight them as possible drop

targets. This also helps the user to locate the physical device.

3.3.4 Modality Mappings

The three most important actions constituting the essential core of the Metamorph inter-

action concept are considered here: Pick, drop and selection. These actions will be

elaborated on in the following sections.

Also, the mappings pictured in this section will be limited to the following input concepts:

Mouse, keyboard, touch screen and voice. These input concepts are considered to repre-

sent the most important input concepts that are covered here due to their popularity and

prevalence.

For a description of the remaining actions and other input concepts see the appendix,

where the complete version of the tables are printed.

43

3 Interaction Concept

Pick

Table 3.3 describes the steps that need to be performed to trigger the pick action.

The description of the voice commands needs some explanation: Everything within the

quotation marks is intended to be spoken. Square brackets mark optional words or phrases,

like [up]. The text enclosed between double angle quotes are placeholders for objects of

the UI, like the current «selection» in the clipboard.

Input method Steps to trigger 'pick'

Mouse (GUI) 1. Click on the desired item with left mouse button
2. Hold the click and start dragging the item

i. The Metamorph ring appears
3. Release the click over a slot

Mouse (gesture) 1. Click on the desired item with left mouse button
2. Hold the click and start dragging the item
3. Perform a swipe gesture to the top

i. The item will appear in a slot in the Metamorph dock

Keyboard 1. Select the desired item
2. Press Control (ctrl) + x for cut or ctrl + c for copy

i. The item will appear in a slot in the Metamorph dock

Touch (GUI) 1. Long touch on the desired item
i. The item will be visually 'picked up'
i. The Metamorph ring appears

2. Release the touch over a slot

Touch (gesture) 1. Select the desired item
i. Item will be visually selected

2. Perform a swipe gesture to the top
i. The item will appear in a slot in the Metamorph dock

Voice 1. "Pick «selection» [up]", "Take «selection»", "Collect
«selection»"
i. Some auditive or visual feedback confirms the pick-up

Table 3.3: A detailed description of the actions needed to perform the pick action using a
set of input concepts.

To capitalise on the mental model people already have of picking something up, all gestures

use a swipe gesture to the top – to emulate the actual physical act of picking an object up.

This is called a ’natural mapping’ by Norman and, according to him, “leads to immediate

understanding" and helps to remember the actions necessary to trigger the pick action.

[Nor02]

44

3.3 Metamorph Interaction Concept

Drop

The steps necessary to trigger the drop action are described in table 3.4.

For the voice command, «ObjectID» is referring to the drop target UI component’s identi-

fier. This could be something like its nominator, for example.

Input method Steps to trigger 'drop'

Mouse (GUI) 1. Click with the left mouse button on the desired item
2. Hold the click and start dragging the item
3. Release the click over the desired location to drop the item

Mouse (gesture) 1. Click and hold the left mouse button
2. Perform a swipe gesture to the bottom

i. The item in the selected slot appears at the cursor
3. Release the click over the desired target location to drop the item

i. Perform shaking gesture to cancel the drag

Keyboard 1. Press ctrl + v
i. The item in the selected slot will be dropped at the cursor's current

location

Touch (GUI) 1. Long touch on the desired item
i. The item will be visually 'picked up'

2. Release the touch over the desired target location to drop the item

Touch (gesture) 1. Perform a swipe gesture to the bottom
i. The item in the selected slot appears at the finger's position

2. Release the touch over the desired target location to drop the item
i. Perform shaking gesture to cancel the drag

Voice 1. "Drop [selection] at «ObjectID»", "Put [selection] into «ObjectID»"

Table 3.4: A detailed description of the actions needed to perform the drop action using a
set of input concepts.

To be consistent with the pick action, the mental model people have of dropping an object is

utilised for the drop action. This is achieved by relying on a swipe gesture to the bottom and

emulates the actual physical act of depositing an object on a table or dropping an object on

the ground.

Selection

The procedure to select or deselect an item that is stored in a clipboard slot is detailed in

table 3.5 for the given set of input concepts.

45

3 Interaction Concept

Input method Steps to trigger 'select' and 'deselect'

Mouse (GUI) 1. Click with the left mouse button on an item
i. If the item is deselected it will be selected
ii. If the item is selected it will be deselected

Alternative
1. Rightclick and select 'Metamorph ring' from the context menu

i. The Metamorph ring appears
2. Click to select or deselect as described before

Mouse (gesture) 1. Perform a circle gesture
i. The Metamorph ring appears

2. Click to select or deselect as described under 'Mouse (GUI)'

Keyboard 1. Press Alternative (alt) + Tab until the dock is focussed
2. Use the arrow keys to focus the desired item
3. Press spacebar or enter

i. If the item is deselected it will be selected
ii. If the item is selected it will be deselected

Alternative
1. Press ctrl + r

i. The Metamorph ring appears
2. Select or deselect using the keyboard as described before

Touch (GUI) 1. Touch on a deselected item
i. The item becomes selected

2. Touch on a selected item
i. The item becomes deselected

Touch (gesture) 1. Perform a circle gesture
i. The Metamorph ring appears

2. Click to select or deselect as described under 'Touch (GUI)'

Voice "What is in the clipboard?", "What have I picked up?", "Show [me the]
contents of the clipboard"

Current Selection
"What [item] is [currently] selected?", "Show|Tell me the selection"

Change selection
"Select|deselect slot «ID»", "Select|deselect «position, like
first, second, etc.» item", "Select|deselect item in slot «ID»"

Table 3.5: A detailed description of the actions needed to perform the select or deselect
action using a set of input concepts.

3.3.5 Feedback

Feedback is an important aspect of any user interface. Without feedback, users cannot

know if their actions were registered or what the outcome of their actions has been – either

if it was successful or ended up in failure. Lacking this information, the users cannot gain

an understanding of the system, therefore hindering them in achieving their goals. [Nor02]

46

3.3 Metamorph Interaction Concept

Output modality Feedback

Visual Pick: • Item appears at the dock in a slot

Drag: • Icon of the picked up item is shown at the cursor

Drop: • Item appears at the drop location
• A plus icon appears at the cursor when the drop

will be a copy

Item selected: • Frame and background of the selected slot
become hightlighted with a colour

Item deselected: • Frame and background of the deselected slots
become as usual

Clipboard contents: • Metamorph dock (global)
• Metamorph ring (local)

Selected item: • Frame and background of the selected slot is
highlighted with colour

Representations
supported by the items:

• Small general icons below the item's icon that
represent text, image, text-to-speech, audio and
video representations

• Detailed tooltip information on mouse over slot

Valid drop targets: • Coloured frame around possible drop targets

Auditive Pick: • A specific sound with increasing tone height to
imply a upward movement

Drag: —

Drop: • A specific sound with decreasing tone height to
imply a downward movement

Item selected: • A selection sound

Item deselected: • A deselection sound

Clipboard contents: • Enumeration of all items by TTS

Selected item: • Description of the selected item by TTS

Representations
supported by the items:

• Enumeration of the modalities for a specific
given item

Valid drop targets: • Enumeration of all possible drop targets' names
by TTS

Table 3.6: An overview of feedback for various actions, subdivided into the visual and audi-
tive channels.

The various kinds of feedback and how the feedback is given depending on the output

modality is shown in table 3.6.

47

3 Interaction Concept

As can be seen, the options to provide complex information with auditive feedback are

rather restricted to mostly text-to-speech output or audio cues (sometimes also called au-

ditory icons).

3.3.6 Transitions

There are two kinds of transitions that take place when using the Metamorph interaction

concept: The transitions of input modalities and the transitions between information repre-

sentations.

The transition between input modalities happens, for example, in minor cases when a user

switches from using the mouse to using the keyboard on the same device. Or, in a more

significant case, when a user transitions from using touch input on a tablet to using voice

and body gesture input in front of a wall-mounted screen. This includes switching devices

as well. Such details severely affect the interaction concept and how the user interacts with

the devices, simply because using a keyboard or mouse is completely different from using

voice input or body gestures. Not every interaction concept translates well – or at all – to

other input concepts. For example shortcuts, which are common when using a keyboard,

are very difficult to translate and use with body gestures.

When the representation of the information item transitions, the media type of the infor-

mation the user is working with needs to be switched. Examples include picking up the

textual representation of an information and dropping it into a video player to play its video

representation or picking up an image and dropping it into the audio player to hear an

auditive description of what the image is showing. The following sections illuminate what

restrictions, possibilities and problems have to be considered for these transitions to work.

Input Concepts

Input can be roughly divided into two kinds of input: Input providing spatial information

and input providing semantic information, like text or commands. This distinction is rather

rough, as spatial information may also be used to convey semantic meaning, for example

a drawn picture is an accumulation of strokes in a structured way or when using gestures

to trigger commands. But typically, these are the two crucial inputs needed to operate a

device efficiently.

48

3.3 Metamorph Interaction Concept

This distinction is required to examine the transitions between input concepts: Each input

modality has its own characteristics, offering different strenghts of expressive power for

conveying spatial or semantic information. Some devices may be more apt to convey spatial

or semantic information than others are.

In the case of transitions between input modalities, the expressive power has to be com-

pared and the question needs to be asked if the other input modality allows the user to

input and express the same information as the original one. Table 3.7 depicts a matrix that

contrasts every input modality with every other to answer this question.

Mouse Keyboard Touch Voice Body gestures

Mouse Equivalence Complementary Specialisation Complementary Redundancy

Keyboard – Equivalence Specialisation Redundancy Complementary

Touch – – Equivalence Complementary Redundancy

Voice – – – Equivalence Complementary

Body gestures – – – – Equivalence

Table 3.7: Transitions between some input modalities to one another. The table should be
read from left to right, rows to columns.

Four kinds of cooperative relationships, borrowed and adapted from the TYCOON frame-

work [Mar99], have been assigned to describe how transitioning between one input modal-

ity to another affects the expressive power of the user.

These four cooperative relationships are defined as follows:

• Equivalence: Both input concepts are approximately equal good at the same kinds

of input.

• Specialisation: Both input modalities can be used for the same inputs, but one is

better suited to do so than the other and always to be preferred over the other.

• Redundancy: Both input modalities can be used for the same inputs, but they might

have individual strengths and weaknesses differing from one another.

• Complementary: Both input modalities are strong at one kind of input and weak at

another, they complement one another and thus are best used in combination.

As can be seen in table 3.7, an input concept is – naturally – equivalent to itself.

A transition from mouse to touch is a specialisation: Both input concepts are apt for pro-

viding spatial information, but a touch screen is better suited to input text than a mouse,

49

3 Interaction Concept

since multiple fingers can be used to input the letters on a virtual keyboard. Whereas with

the mouse, only one letter can be moved to and clicked at a time – which is rather cumber-

some. It may be argued that a mouse is more precise at pointing than a touch is, but this is

beyond the scope of this work – both work reasonably well at pointing [MSB91]. A transi-

tion from keyboard to touch is also a specialisation since a keyboard can be emulated on a

touch screen and touch is better at providing spatial information than a keyboard. Although

the keyboard is better at inputting text, since it is physical and provides haptic feedback

[FWW11], the touch input is overall more apt to provide spatial and semantic input. Ad-

ditionally, haptic feedback may be achieved on touch screens using vibration on touch or

other approaches.

Body gestures form a redundant relationship with the mouse: Both can be used for pointing

and performing gestures, but the mouse is more precise at pointing and body gestures, as

the name implies, work better for gestures to trigger commands. Also, they are rather weak

at inputting semantic information like text. Keyboard and voice input form a redundant

relationship as well: They are both equally effective at inputting text, with voice input being

significantly faster and offering more ease of use [ZNK10]. Special characters might be

easier to input using voice (for novice users not familiar with a keyboard or characters not

found on a typical keyboard), but it may be overall more prone to errors than keyboard

input. Finally, touch and body gestures are redundant as well with touch being the superior

input concept. Semantic input is rather hard to input using body gestures, especially text

[HDS12], whereas spatial information can be inputted with both reasonably well with each

concept having their inherent strengths and weaknesses: Body gestures allows quicker

pointing, especially over larger distances, whereas touch is more precise.

Input concepts that form complementary relationships are only apt for one kind of input,

spatial or semantic, and thus need to be used in conjunction with another input concept that

provides an apt method for the other kind of input. Mouse and keyboard are a well-known

combination of input concepts that complement one another well, using the mouse as a pre-

cise pointing device and the keyboard to input semantic information. The mouse also has

a complementary relationship with voice input, since voice input is severely lacking in ex-

pressing spatial information. Text and commands, however, can be naturally and efficiently

inputted using voice – provided that the speech recognition works flawlessly [HDS12]. Al-

though uncommon, keyboard and body gestures complement each other as well, with the

keyboard being used for semantic input and body gestures mainly for spatial information.

The same goes for touch and voice input, with touch being used to countervail the lack of

50

3.3 Metamorph Interaction Concept

spatial expressive power of the voice input. Lastly, a more common approach is to combine

voice input with body gestures, which is especially popular in today’s science-fiction user

interfaces and in research projects [HDS12].

Media

The media transitions depicted in table 3.8 have been identified by creating a matrix of

the atomic media types identified in section 3.4.1. The media types can be split into two

categories: Permanent media and transient media.

Permanent media is static and consists of media representations like text or images.

Those types of media always look the same and present their information all at once in

a persisted state that does not change over time.

Transient media is dynamic, like audio3 or video. It only communicates a fraction of its

information at a time. To get the complete information that the transient media contains, it

needs to be played back over time. Also, when it has been played back, its representation

has volatilised – it does not persist. Dynamic in this context, however, does not mean that

the information itself changes or may be changed by the user – the played-back information

stays the same, only its representation changes in a predetermined, reproducible pattern

during playback.

Target Representation

Text Image Audio Video

So
ur

ce
 R

ep
re

se
nt

at
io

n Text – No complications Permanent, static →
transient, dynamic

Permanent, static →
transient, dynamic

Image No complications – Permanent, static →
transient, dynamic

Permanent, static →
transient, dynamic

Audio Transient, dynamic →
permanent, static

Transient, dynamic →
permanent, static – No complications

Video Transient, dynamic →
permanent, static

Transient, dynamic →
permanent, static No complications –

Table 3.8: Transitions between source and target representations. Green indicates tran-
sitions without difficulties, orange indicates a transition from a permanent to a
transient representation and yellow indicates a transient to a permanent transi-
tion, which have some inherent incompatibilities.

3Text-to-speech is considered a subtype of audio in this case.

51

3 Interaction Concept

A transition within the same category of media does not yield any complications. Picking a

textual representation of an information and then dropping it as an image is unproblematic

and the information persists, only in another representation.

The transition between transient types works also as exptected: When picking an audio

information and dropping it into a video player, the video starts to play back just as the

audio would have and when the video ends, the information output is over.

It gets problematic when a textual representation is dropped on the video player: The

basic information is then “played-back” as a video and its representation suddenly becomes

transient. When the video has been played-back, the information representation is “lost” as

it has volatilised.

Identified Problems

The handling of cut and paste operations for transient media is inherently problematic.

To provide an example, when a user picks up a music album on the computer and drops it

onto his audio equipment, the question arises whether the information should be removed

from the computer – to fulfill the contract of a cut and paste operation – or not. If it were

to be removed, the information would be lost since the audio equipment does not have a

storage for the music album, it just receives the stream from the computer.

Also, only atomic types have been considered up until now. Often though, media is hier-

archical – text has headlines, subheadlines and paragraphs, audio has tracks and times-

tamps, audiobooks and videos are often structured into chapters, etc. When transitioning

betweeen media representations, this additional information about the internal structure

and current position of the user has to be stored and preserved during a pick and drop

operation across devices and media types. Another problem is, that a mapping has to be

found for a position, for example, in a video to the same position in a text: When the user

just watched a specific chapter of a video, what position in the text corresponds to this

position if there is a corresponding position at all?

There is a gap during the transition between input modalities: Some input modalities

use a physical device and provide tactile feedback while others do not. A mouse, keyboard

and touch screen are all physical devices that are used to receive input, whereas voice

and body gestures input uses physical devices which are not directly involved in the user’s

interaction, like a microphone or video camera. Switching from tactile input methods to

52

3.3 Metamorph Interaction Concept

non-tactile may feel unnatural or strange. Since most dominant input methods up until now

have been tactile, switching to non-tactile input modalities may also feel unfamiliar and may

need some time to get accustomed to.

When making a selection out of a pool of information items by picking one up, the infor-

mation data will be copied, as it makes no sense to remove it from the selected information

as a consequence of selecting it. For example, picking the colour blue out of a collection of

colours should not erase the text or image representing the colour from the information. A

reference would be another possible solution, with changes being made to the information

object transferring back to its original information and vice versa, thus the data would not

be removed from the information upon selection.

But this would introduce a gap to the interaction concept, further complicating its usability

as this behaviour does not fit into the behaviour of the interaction concept so far, with the

UI components representing a given information, remaining independent of one another.

Additionally, a reference introduces a relation between UI components, which is hard to

make visible without cluttering the UI. But without a visualisation, a user cannot see that

modifying a certain information item in one place changes the same information in all other

places as well.

In most cases, a selection is not made to edit the information itself, but rather to compose

multiple information items to create new information, in which case the selected informa-

tion’s data is copied into the new information fragment.

When working with information that can consist of only a subset of the available represen-

tations, the problem of how to handle composing subsets of representations arises.

For example, when dropping an information item with a text and an audio representation

on a UI object that holds an information that contains a text and picture representation, the

text and audio representations are merged into the dropped information, while the picture

representation is retained. The purpose of dropping information on UI objects is to com-

pose new information, so it would not make any sense to remove the picture representation

because the dropped information did not possess one.

Using the nominators of UI components to identify the UI objects when using ASR leads

to an inconsistency with dynamic nominators that adapt themselves to the information

they store (see section 3.3.1 on page 37). This behaviour may not be immediately apparent

to the user.

53

3 Interaction Concept

3.4 Paper Prototype

To make the evaluation of the interaction concept possible in this early stage, whilst not

even a single line of code had been written yet, the paper prototyping method was used

[Ovi03]. Paper prototyping is a method that allows to evaluate a user interface in a user-

centered design approach by using rough drawings and (potentially hand-drawn) sketches

on paper to simulate a user interface prototype in an evaluation, as shown in figures 3.10

and 3.11. This is similar to a Wizard of Oz experiment, where the reactions of the computer

are simulated by a human. However, unlike in a Wizard of Oz experiment, the human helper

is visible to the test participants and helps to walk them through the tasks. [Pap13]

Figure 3.10: Photos of the paper prototype. On the left, a computer screen with the Meta-
morph dock and a form is shown. On the right, a touch table with the Meta-
morph dock and an image viewer is shown. The dock contains the single
information item “apple" on both devices.

This approach offers several advantages [Med07]: It offers the ability to catch design flaws

very early in the design process when it is easy and advantageous to fix them. Furthermore,

no technical background is required by the evaluation participants. The usage of paper

encourages experimentation, as paper can be complemented or modified by new ideas

easily even on the spot with just pens and scissors. It allows fast and flexible iterations,

which allows to change directions more easily since not much effort has to be invested into

the paper prototype. Documenting the evaluation is easy, as it is possible to write notes

directly onto the prototype. And lastly, the cost requirements to perform it are very low

(both in budget and preparation).

The procedure as well as the summarised results are presented in the following sections.

54

3.4 Paper Prototype

Figure 3.11: Photos of the paper prototype for mobile devices. On the left, a tablet is shown,
experimentally using the Metamorph dock instead of the app. On the right, a
smartphone featuring the Metamorph app is shown.

3.4.1 Procedure

Before the actual paper prototype evaluation could be conducted, some preparations had

to be done and some things to be considered. The following steps have been taken:

1. List input concepts to consider in the evaluation

2. List media types to consider in the evaluation

3. Create matrix of interesting or problematic media transitions (shown in section 3.3.6)

4. Devise questionnaire

5. Devise available information items to interact with

6. Devise user tasks

7. Conduct evaluation

8. Summarise and write down results

These individual steps will be detailed in the following subsections.

Input Concepts

After the initial draft of the interaction concept was written, the first step was to list all input

concepts to include in the evaluation. The following input concepts – without any particular

55

3 Interaction Concept

order – have been considered: Mouse input utilising a GUI, mouse input utilising gestures,

keyboard input, touch input on a large touch screen (like a touch table), touch input on a

small touch screen (like a smartphone), speech input and body gestures.

This list covers a wide range of input concepts and possible devices that support those

concepts, like desktop computers, notebooks (traditional, subnotebooks, tablet computers),

tablets, touch tables, (wall-mounted) touch screens and smartphones to name the most

common ones.

Atomic Media Types

Subsequently, the supported media types were listed as follows: Text (visual), image (vi-

sual), audio (auditive) and video (auditive and visual). These are oriented on the most basic

types of media, with the exception of video – which is a multimedia type that combines im-

ages with audio, but this is not relevant for this evaluation.

Only atomic media types have been considered, meaning types without any hierarchical

structures. Also, these media types are independent of any specific media formats like WAV

or MP3 for audio formats, as this does not affect the evaluation of the interaction concept.

Media Transition Matrix

See section 3.3.6 on page 51 for the identified matrix of possible and problematic media

transitions.

Questionnaire

The questionnaire was done using the Single Ease Question (SEQ), where only a single

question is asked concerning the ease of use after the given task was done. The participant

can then rate the ease of use using a 7-point Likert scale ranging from “very difficult” to “very

easy”.

The participants were asked to perform every single task using every input concept once

and to rate it using the 7-point rating by answering the SEQ. Also, a field for additional notes

was placed under the rating table to allow additional feedback.

56

3.4 Paper Prototype

Items

The following items were made available to use and interact with during the tasks of the

paper prototype:

• Apple

Supported media types: Text, image, audio

• The Breakfast Club (movie)

Supported media types: Image, audio, video

• Uni Ulm

Supported media types: Text, image, video

Tasks

The participants were asked to accomplish the following tasks:

1. Pick up Apple from one kind of type and then drop it on another type.

2. Pick up The Breakfast Club from the Name text field. Copy it to the image viewer

and then to the video player.

3. Pick up Apple, The Breakfast Club and Uni Ulm from one kind of type. Select

Uni Ulm and drop it on the video player.

4. Pick up Uni Ulm on the computer and drop it on the smartphone into the video player.

5. Pick up Apple on the smartphone and drop it on the video player on the touch table.

3.4.2 Results

A number of insights and feedback have been gained by the evaluation. First of all, it was

clear that the Metamorph dock should always be visible to the user when it contains at least

one item. This increases the clarity of the user experience and avoids confusing the user

with a hidden multi-item clipboard. It has even been suggested to have it visible all the time

instead of only when it contains items or when the user starts to drag an item.

Additionally, the observation was made that the speed of gestures will play a vital part con-

cerning their usability. Triggering gestures by accident or having gestures that are difficult

57

3 Interaction Concept

to trigger even though the user intends to do so needs to be prevented in order to avoid

user frustration.

Another observation was that having only a dock with item slots at the top of the screen

may proof inappropriate for large screens, especially for large wall-mounted screens where

reaching the top may be difficult or impossible. Also, the term “top” may be ambiguous for

touch tables where users may stand at any corner they wish to. This led to the introduction

of the Metamorph ring.

Furthermore, it was noted that voice-only identification of locations is very hard near to

impossible. It is therefore preferable to combine voice input with other input modalities

more fit for pointing to determine target items and locations. The evaluation was then

altered to allow voice commands to be complemented by another pointing concept (like a

mouse or pointing gestures using the body). In addition, some kind of feedback is especially

important when making selections by using pointing gestures using the body.

It was also revealed that feedback on some actions, a possibility in the GUI to change the

drop mode (cut or copy) and the possibility to change the selected items using keyboard,

touch and gesture input was missing completely in the current concept. This was immedi-

ately amended after its discovery.

These results helped to improve the interaction concept by smoothing some rough edges

and by pointing out some missing parts.

Identified Interaction Problems

Some inconsistencies, which can not be easily remedied, have also been revealed by the

paper prototype.

On the one hand, using the control key (ctrl) to switch the data transfer mode (cut/copy)

when dragging something – which is a convention on Windows systems – is not possible

for cases where no keyboard is available, like a touch screen running a typical OS. Al-

ternative inputs have to be utilised to allow this switch of modes when using other input

modalities than a keyboard. Also, using the control key to indicate whether to cut or copy

the information cannot be used in the keyboard-only case, as the established paste shortcut

already uses the control key for triggering the paste operation itself.

58

3.5 Interim Conclusion

On the other hand, it may be confusing to have a dock GUI at the top of the screen and

additionally having a ring GUI at a local nearby position. But this is necessary since the

picked-up items should always be visible, although having the ring be visible all the time

might be bothersome. However, having a ring GUI is not fit for small screens like smart-

phones.

3.5 Interim Conclusion

This concludes the interaction concept. During the course of this chapter, the requirements

and limitations have been defined, the abstract interaction concept with its basic elements

and actions were introduced, the abstract and concrete components that constitute the

interaction concept have been proposed and some inherent problems with offering a multi-

modal interaction concept have been elaborated.

The multitude of interaction possibilities offered by the Metamorph interaction concept come

at the cost of simplicity, learnability and clarity. It is attempted to alleviate the complexity by

utilising natural mappings, making the clipboard visible and by providing clear and helpful

feedback to keep it usable. A prototypical implementation will help to evaluate the feasibility

and usability of the interaction concept and its realisation.

Some possible problems have already been identified in section 3.3.6, which was one goal

defined in the requirements from section 3.1.2 on age 25. For the prototypical implemen-

tation, problems like cut and paste with transient media or hierarchical media types will be

ignored by limiting the prototype to copy-only. But since they pose an interesting question

as to how users expect the system to behave in such cases, they will be examined in the

expert evaluation following in chapter 5. Other problems, like the merging of information

representations or dynamic nominators in conjunction with ASR, have been uncovered by

the prototypical implementation and found their way back into the interaction concept. Be-

cause the merging of information is trivial, as it would minimise the use to simply override

one information item with all representations of the other, it will not be further discussed.

The handling of dynamic nominators in combination with ASR, on the other hand, poses an

interesting problem and will be further examined in the expert evaluation.

59

4 Prototypical Implementation

A prototype is developed as a proof of concept, to gain solid first-hand experience and

feedback on the proposed interaction concept from a user perspective and on the feasibility

from a developer perspective. The prototype extends the existing system introduced in

section 2.2.3 on page 19. Like the existing system, it was implemented using the C#

programming language utilising the .NET Framework in version 4.0.

The prototype is mainly implemented in the output and input device components of the

existing system, as depicted in figure 4.1. This is sufficient to proof the concept introduced

in chapter 3 and short-circuits complex systems like the dialog management, the fission

and the fusion in order to retain full control over all aspects in the UI. Nevertheless, the

proper integration into the model-based multimodal system is implemented and described.

Also, only the copy mode was implemented (see section 3.3.1 on page 36), since cut may

not always be possible.

common ground for the main characteristics needed: Future

systems and experience them as competent and empathic knowledge base

Companion System
output device
components

multimodal fusion task
planning

dialog
management

multimodal �ssion
application

core

input device
components

environment
recognition

Figure 4.1: Architectural overview of the existing system. The prototype was mainly imple-
mented and integrated in the output and input device components. [HSW+13]

This chapter starts by examining the existing system and its implementation in more detail.

An understanding of some parts of the existing system is necessary insofar as the prototype

utilises and extends it. The system design is introduced in the next section, followed by an

elaboration on the implementation in the section thereafter. Lastly, a conclusion on the

future prospects is given in the final section of this chapter.

61

4 Prototypical Implementation

4.1 Existing System

The existing system offers a model-based approach to user interface generation at run-

time. It is a distributed system that uses the SEMAINE API [SEM], a message-oriented

middleware (MOM), for communication. The system’s interaction management (IM) allows

the flexible and dynamic adaption of the user interface to the context of use at runtime. The

IM also provides capabilities for automatic speech recognition (ASR), text-to-speech (TTS)

output, an XML schema to model device capabilities, adapted GUI components based on

the .NET Windows Presentation Foundation (WPF), an event-driven system for dialog han-

dling and finally logging and monitoring capabilities for messages sent via the MOM, for

input and output.

4.1.1 User Interface

The main assembly, that is concerned with the generation of the generic MUI, is called

ClientRuntime. It accommodates the executable to start the client UI, the various UI

components, the device model, the UI generation and code for generating dialog and inter-

action input messages. Figure 4.2 shows a diagram of its structure reduced to the relevant

aspects for this work.

Dialog & Interaction Output

The dialog output represents the abstract UI and is described using XML files. It is a

modality-independent representation of the UI that is received and reasoned about by the

fission to generate the interaction output.

The XML file describing the concrete UI is called interaction output. It stands for the

modality-specific representation of the UI. The ClientRuntime receives the interaction out-

put XML file via the MOM and interprets it to generate the UI at runtime. This way, the

interaction output can be sent and realised on various devices in a distributed environment.

Listing 4.1 illustrates the structure of a simple interaction output file, which contains a text

field and a picture bundled in a dialog act with a topic.

62

4.1 Existing System

Figure 4.2: A reduced diagram that depicts the overall structure of the ClientRuntime. All
components that have been modified for the prototype are coloured in orange-
red and all components that have been added are coloured in green.

Dialog & Interaction Input

After inputs have been sensed and interpreted by the individual input devices and compo-

nents, a modality-specific interaction input is created in the form of an XML file and sent

to the fusion via the MOM. Until then, all inputs have been interpreted in isolation.

The fusion has the ability to combine inputs and creates an abstract, modality-independent

dialog input XML file that is passed on to the dialog management via the MOM. The

dialog management then handles the inputs accordingly and generates in turn the resulting

outputs.

The dialog input represents the combined results mapped to a semantic representation by

the fusion, as described in section 2.2.1 on page 14.

63

4 Prototypical Implementation

<?xml version="1.0" encoding="utf-8" ?>
<interactionOutput
 xmlns="http://sfb-trr-62.de/b3/InteractionOutput.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 initTime="2012-02-15T19:16:36"
 dialogOccurredTime="2012-06-04T08:41:16.059127+02:00"
 dialogID="MM-1.0">

 <outExpression deviceID="Experimental_Platform" deviceComponentID="TouchScreen">
 <topic>
 <text objectID="MM-1.0.topic" informationID="MM-1.0.topic">
 Metamorph Simple Pick-and-Drop
 </text>
 </topic>
 <dialogAct>
 <text objectID="textfield1" informationID="apple" isEditable="true"
 nominator="Text 1:">
 Apple
 </text>
 <picture objectID="picture1" informationID="pineapple"
 isPickable="true" isDroppable="true">
 data/images/fruits/pineapple.png
 </picture>
 </dialogAct>
 </outExpression>

</interactionOutput>

Listing 4.1: A typical interaction output XML file.

SEMAINE Components

The SEMAINE components are responsible for communicating with other components in

the distributed systems, like other client runtimes or the dialog management, by sending

topic-oriented messages like the dialog and interaction inputs or outputs. Multimedia con-

trols like the audio and video player of the system also utilise their own media control sender

to control the media players they are related to.

The Metamorph prototype uses these capabilities to send its inputs to the dialog man-

agement, although the dialog management is not modified to interpret and execute the

Metamorph actions received.

4.1.2 Extending the Existing System

Although the given implementation already offers a lot of functionality, not everything that

was required for the Metamorph interaction concept was available from the beginning. In

64

4.1 Existing System

order to realise the use cases from section 3.2, a few additional components had to be

added to the existing system, which will be explained shortly here.

Figure 4.2 also illustrates all components that have been extended or added to the existing

system, with orange-red coloured components marking extension of existing components

and green coloured components indicating newly added components.

Audio Support

On the basis of the already implemented GwVideo component and the WPF MediaElement,

which already offers capabilities to play both audio and video media files, a base class

called GwMediaElement, that combines the common aspects of audio and video, has been

created. The movie control component was extended to support the audio player compo-

nent. Therefore, it was renamed to media control. The type of media player is then set by

an attribute called controlType in the interaction output.

Grid View

A grid view implementing the IGw-interface (see figure 4.2) was added to display a collection

of information items in an orderly grid as part of the dialog act. The new grid view can

be used to realise an abstract collection of information items. Figure 4.3 demonstrates a

possible grid view.

Four classes had to be added: GwGrid and GwGridItem are located in the ClientRuntime

assembly and handle the GUI-side to display the information on the concrete level. Backing

classes called Collection and CollectionItem were added as well. They represent the

simple concept of a collection and reside on the abstract level. The grid view is separated

into two classes: The actual grid itself (GwGrid and Collection) and the items the grid

contains (GwGridItem and CollectionItem, respectively), which in turn are composed

out of existing text, picture and TTS text components.

Finally, the XML schema for the dialog output and interaction output had to be extended

to offer tags for the collection on the abstract level and the grid on the concrete level. The

code to generate those components from the XML interaction output files had to be added.

65

4 Prototypical Implementation

Figure 4.3: The grid view utilised in use case VI to position pickable gear in a well-arranged
manner.

Mouse Gesture Support

Mouse gesture support was added to the ClientRuntime by utilising and adapting an

existing library released under the New BSD License called “Mouse Gestures for .NET”

[Kab10]. This is a simple library that records mouse movement when the right mouse

button is held down. It differentiates between the four basic directions: Up, down, left and

right. When the right mouse button is released, a GestureRecognized event is fired with

MouseGestureEventArgs attached, which contains a MouseGesture object – an object that

contains a recording of the gesture and other relevant information about the gesture.

The library was converted to .NET 4.0 (from .NET 2.0) and WPF-support was added by

removing the tight coupling of the mouse gesture recognition code from the WinForms

code and adding a WPF mouse filter – which is responsible for hooking up with the WPF

mouse events and filtering out input that is used for gestures from the rest. Pre-existing

mouse filters for WinForms and direct hooks into the Windows API were adjusted to use

the new MouseGestureRecognizer class that now encapsulates the gesture recognition

code.

66

4.2 System Design

Dialog & Interaction Input

The XML schemas for the dialog and interaction input files had to be extended by a new

input type called PickAndDrop, which is shown in listing 4.2. As can be seen, the dialog

input (as well as the interaction input) is extended by the basic actions as defined in section

3.3.1 on page 30. Each action is defined in the XML schema to contain the required data,

as defined in the interaction concept, as well.

<xs:complexType name="PickAndDrop">
 <xs:choice minOccurs="1" maxOccurs="1">
 <xs:element name="pick" type="Pick"/>
 <xs:element name="drop" type="Drop"/>
 <xs:element name="select" type="Select"/>
 <xs:element name="deselect" type="Deselect"/>
 <xs:element name="clearSlot" type="ClearSlot"/>
 <xs:element name="clearUiComponent" type="ClearUiComponent"/>
 </xs:choice>
</xs:complexType>

Listing 4.2: The definition of the new PickAndDrop type for the dialog and interaction input.

4.2 System Design

This section elaborates on the system architecture designed to realise the Metamorph in-

teraction concept. Two assemblies were added to the existing project. Those assemblies

are called Metamorph and MetamorphRuntime.

The Metamorph assembly is a class library that contains all relevant code and functionality

to realise the interaction concept on the abstract and concrete level. This includes code to

store and synchronise information, UI components and backing classes for the clipboard,

and lastly classes to interpret and execute the Pick-and-Drop interactions as defined in

chapter 3. It is partitioned into four namespaces: Sychronization, Storage, GUI and

Interaction (including the Trigger namespace). Figure 4.4 illustrates the namespace

structure and the relationships between the classes. Each namespace is described in the

following subsections.

The MetamorphRuntime is an executable that uses the Metamorph assembly and provides

some global instances to the interaction concept.

67

4 Prototypical Implementation

Figure 4.4: The overall namespace structure and class relationships of the Metamorph sys-
tem architecture when used with the given ClientRuntime.

The Clipboard and Information classes are fundamental to the Metamorph interac-

tion concept and therefore reside at the root of the assembly, in the namespace called

Metamorph.

4.2.1 Synchronisation

The Sychronization namespace is responsible for the task its name stands for: Keeping

everything synchronised across all clients in the distributed single-user environment. There

are two hings that need to be kept synchronous for Metamorph: The clipboard and the

information storage (which is described in more detail in section 4.2.2).

68

4.2 System Design

Figure 4.5: An overview of the communication paths and the integration of the Metamorph
components into the existing system. The existing system’s components are
coloured purple, the ClientRuntime components are orange and the Metamorph
components are green. Note that the Metamorph component actually belongs
into each ClientRuntime like the InteractionMediator, but is shown outside to
allow a better arrangement.

There exist two SEMAINE components for both cases: One responsible for the global part

and one for the local part. There is only one global counterpart per system, started by the

MetamorphRuntime as shown in figure 4.5, that performs tasks like initialisation or keeping

the states of the clipboard and the information storage in sync across all clients.

A client can run on different or the same device as a separate UI component, which makes

no difference to the synchronisation. It also allows the clients to dynamically connect or

disconnect from the system at any given time without losing the clipboard state.

The clipboard components are derived from the common base class ClipboardComponent,

since they are very similar and only deviate in small details – like which component is

broadcasting updates and which one receives them remotely.

The Sychronization namespace only interacts with the clipboard and the information stor-

ages by holding references to them and subscribing to events to keep it loosely coupled.

69

4 Prototypical Implementation

4.2.2 Storage

The loading, storage and access to information is handled in the Storage namespace. The

InformationStorage abstract class both is an interface and provides common functionality

to the derived classes, which define how to load information and what storage technique

to utilise, making the system more flexible and extensible. The base class also allows the

other components to easily access the information storage by providing a static factory

method.

Currently, there are two default implementations of information storages available: The

GlobalInformationStorage, which loads the complete information data from XML into

memory, and the LocalInformationStorage, which requests information via the corre-

sponding SEMAINE component from the GlobalInformationStorage and caches the re-

ceived information.

The information storages hold no references to the SEMAINE components and therefore

effectively don’t know about them. The SEMAINE components, instead, subscribe to the

events of the information storages they are interested in.

4.2.3 Metamorph Runtime

The MetamorphRuntime is an executable assembly that is started once per system and

takes on the role of a central data store. It starts the global variants of the clipboard and

information storage classes as well as their related SEMAINE components.

It also offers a monitor depicted in figure 4.6 that registers and logs incoming and outgoing

messages to the clipboard and information storage as well as general messages concering

the startup and execution of the global components. This is achieved by subscribing to the

events fired by the clipboard and information storage classes.

4.2.4 Interaction

Last but not least, is the Interaction namespace, which encapsulates input interpretation

and action execution. The InteractionMediator is a mediator that sits between the input

interpretation, done in the Trigger sub-namespace, and the backend of Metamorph, rep-

resented by the clipboard and information storage. The mediator abstracts away the clip-

70

4.2 System Design

Figure 4.6: The monitor started by the MetamorphRuntime that tracks the messages ex-
changed via the MOM for the information storage and the clipboard.

board and information storage from the input interpretation and is responsible for handling

the action requests either itself or by delegating certain tasks to the appropriate backend

components where necessary.

This design was chosen for the prototypical implementation to short-circuit the dialog man-

agement, the fission and the fusion while still offering the ability to integrate them in a future

work. The interaction mediator realises the abstract actions of the interaction concept and

fires an event when one of the abstract actions is being triggered. These events are han-

dled by the ClientRuntime, which in turn creates dialog and interaction input messages

for those actions and sends them. Currently, these messages don’t cause any effect.

The code for input interpretation can be found in the Trigger namespace as shown in

figure 4.7. Every interpreter for a specific input modality – like ASR, cursor-based input

methods (which stands for pointing devices like a mouse, touch screen, pen input, etc.) or

gestures – is implemented in its own action trigger class. The base class ActionTrigger

provides common functionality shared among all action triggers. But the actual input in-

terpretation and triggering of actions is implemented well-encapsulated in the subclasses

of the ActionTrigger. Common functionality, namely the actions to be executed when

an input has been correctly identified, is bundled in the InteractionMediator class. The

71

4 Prototypical Implementation

Figure 4.7: The ClientRuntime class references the mediator to subscribe to its events
about actions being triggered to send the corresponding dialog and interaction
inputs.

action triggers use the mediator to ’trigger’ the actions when the matching input has been

registered. This allows reusability of the abstract interactions and easy extensibility by new

input modalities.

Since wiring the input modalities up with the UI is highly specific to the input modality

itself, the action triggers are directly used by the UI components in the ClientRuntime.

Generally, two kinds of input handling can be distinguished here: Global input handling (like

ASR) and local input handling (like cursor-based input). Global input handling needs only

to be instantiated in the base window of the UI and is then globally available. For example,

a window either has speech recognition or not, it’s not dependent on which UI component

the user is interacting with. Local input handling, on the other hand, needs to be added to

every single UI component that should support it and is then only locally available on those

components. For example, drag & drop with a mouse needs to be implemented for the text

field itself when dragging text from text fields should be supported.

4.2.5 Graphical User Interface (GUI)

The GUI namespace contains custom GUI components to be used in conjunction with the

Metamorph interaction concept, like the dock. These components are loosely coupled with

the Clipboard by subscribing to the clipboard’s events that inform about an information

being added or removed, a slot being selected, etc. This allows easy substitution and

72

4.2 System Design

extension of possible clipboard representations as the clipboard is clearly separated from

its representation.

For this work, only the Metamorph dock was implemented as a proof-of-concept.

4.2.6 Voice User Interface (VUI)

A voice user interface could be added easily in the same manner that the GUI interface

components were added as described in section 4.2.5 by subscribing to the clipboard’s

events. As with the GUI representations, multiple VUI components are possible following

different approaches on how to represent the clipboard in an auditive way.

For this work, no VUI was implemented to keep the focus on the interaction concept.

4.2.7 Summary

The requirements for the interaction concept, defined in section 3.1.2 on page 25, derive

to implementation specific requirements that need to be considered in order to achieve the

goals of the interaction concept. A system has to be separated into well encapsulated and

extensible components to support the multimodal input and output capabilities. Therefore,

the system design is roughly separated into three components as defined by the model-

view-controller design pattern.

The clipboard, being the central part of the interaction concept, is realised independently of

any modality-specific representation on the abstract level and represents the model to fulfill

the modality-independent nature of the interaction concept as defined in section 3.1.2. It is

being synchronised by message-oriented middleware components that send and receive

status updates concerning actions on the clipboard. This allows the clipboard to be used in

a distributed system to allow the exchange of information across device borders.

An exchangeable visual dock is added on top of the clipboard to display its content and

represents one possible kind of view on the clipboard model. The clipboard offers events

that decouple the model from the actual components giving feedback to the user. For

example, an auditive dock, serving as a voice user interface (VUI), could be easily added

as an additional view due to this design. This allows the extension of the system by new

output representations, making the clipboard independent of modality-specific feedback as

stated in section 3.1.2.

73

4 Prototypical Implementation

An interaction mediator is added in-between the clipboard, action triggers and the UI com-

ponents to serve as an encapsulating layer and central controller. The interaction mediator

realises the modality-independent set of actions offered by the interaction concept (see sec-

tion 3.3.1 on page 30), whereas the details for specific input modalities are hidden within

their respective action trigger.

The action triggers are extensible implementations of specific input concepts, like automatic

speech recognition (ASR). This allows the system to be extended by new input modalities

without having to change the basic actions of the interaction concept.

4.3 Implementation

This section describes the overall implementation and highlights some noteworthy details.

Figure 4.8 illustrates the Clipboard class. It is a singleton that manages the clipboard’s

content by storing and providing access to information items. In addition, it offers events

like InformationAdded, SlotSelected, etc. to inform other components – like the GUI

dock – about state changes occurring in the clipboard. This allows a loose coupling be-

tween the abstract clipboard state – which is basically hidden from the user’s perception

without representation – and possible concrete representations of it. Adding a new kind of

representation, like an aural dock, is therefore easily possible.

The Clipboard also keeps track of the most recently and least recently used information

items. This is used to make smart choices when the clipboard is full and a new information

item is added without a slot specified, as the oldest information item needs to be overwritten

by the new one then. It also keeps track of the currently selected slot as this is a relevant

information not only to the GUI, but to the interaction concept as well.

The Information class simply holds the data of an information item and has convenience

properties to check which representations are available. It also features the possibility to

create a dummy object without data which is updated later when it was retrieved through a

request using the corresponding SEMAINE components (detailed in section 4.3.2). When

an information object is updated, it fires an event called InformationUpdated to inform

interested components about the change.

74

4.3 Implementation

nnnnnnnnnnn

sssss

ssssssssss

iiissiiiiiiiss

igiiissssgg

gsgsgssssiiissssgg

ssisissiiiiiiiss

isisggssssgsgssissiiissssgg

gsgsiiissssgg

gsgsgssgsssgsiiiissssgg

gggssgsiiissssgg

gggssgsgssgsssgsiiiissssgg

isissiiiiiiiss

sssgsis

idsssdssisiddiiidssi

isisssddiiidssi

sdsgss

igrssgssssgisisssiiiisdsgsrsgisss

ddnddnnnd

sssss

gsssis

sittgdtggiiisgs

sssgsis

iiiddiiidssi

sssssgsssddiiilsss

gsssssisgsssddiiidssi

isgsssgsssissiddiiilsss

isgsdsddiiilsss

gsssisgsssddiiidssi

sdsgss

igrssgssssgiiisiiiigssssgsggssdsgsrsgisss

igrssgssssgisgsdsiiiigssssgsggssdsgsrsgisss

igssssssrsiiiisdsgsrsgisss

gsssgsssssissiiiigssssgsggssdsgsrsgisss

gsssgsssissiiiigssssgsggssdsgsrsgisss

gssssiigssss

isssssisssg>igrssgssssg>

Figure 4.8: Condensed class diagram of the Clipboard and Information classes. See ap-
pendix A on page 103 for the full version.

4.3.1 Synchronisation

There are three classes related to the clipboard: ClipboardComponent, the abstract base

class, LocalClipboardComponent, the component for the ClientRuntime (running locally

on possibly remote devices), and GlobalClipboardComponent, the central component

started by the MetamorphRuntime. A class diagram of this namespace can be found in

appendix A on page 103.

The LocalClipboardComponent reports back changes applied on a ClientRuntime to

the GlobalClipboardComponent running in the MetamorphRuntime. There can be any

number of ClientRuntimes running on any number of (remote) devices in the system,

but only one MetamorphRuntime. The GlobalClipboardComponent in turn broadcasts

received updates to all local clipboard components, as illustrated in figure 4.9. Every local

clipboard has an identical state as the global clipboard at all times and is kept in sync.

The GlobalClipboardComponent also sends its complete state on a separate topic exclu-

sively used for initialisation requests when a new client connects. The initialisation request

is sent by the LocalClipboardComponent once when it is started. After the initialisation is

done, the local component unsubscribes from the initialisation topic.

75

4 Prototypical Implementation

G
lo
b
al

C
lip
b
o
ard

C
o
m
p
o
n
en

t

Lo
cal

C
lip
b
o
ard

C
o
m
p
o
n
en

t
semaine.data.metamorph.clipboard.initialization

semaine.data.metamorph.clipboard.update

semaine.data.metamorph.clipboard

G
lo
b
al

In
fo
rm

atio
n

C
o
m
p
o
n
en

t

Lo
cal

In
fo
rm

atio
n

C
o
m
p
o
n
en

t

semaine.data.metamorph.information.request

semaine.data.metamorph.information

semaine.data.information.update

C
lip
b
o
ard

G
lo
b
al

In
fo
rm

atio
n

Sto
rage

C
lip
b
o
ard

Lo
cal

In
fo
rm

atio
n

Sto
rage

Figure 4.9: The communication and the MOM topics used by the synchronisation compo-
nents. Broadcast topics are coloured yellow.

The GlobalInformationComponent stores and contains all information in the system. It

acts like a central database. The LocalInformationComponents only request the informa-

tion they need for their client at the time, caching the information they receive. They also

send changes applied to the information they cache back to the global information com-

ponent, which in turn broadcasts them to the other local information components so the

information gets updated everywhere as soon as it is changed.

4.3.2 Storage

There are two implementations for the abstract InformationStorage base class: A global

and a local version of an information storage. The InformationStorage base class itselfs

offers a static factory method to instantiate its derived classes, so only a parameter has to

be changed when a different implementation should be used.

The base class also uses the factory method to manage the lifecycle of the information stor-

age objects by ensuring that only a single instance of any given combination of language

and information storage implementation is instantiated at any time, effectively making the

information storages singleton objects. This fact can be changed easily as the static factory

method encapsulates the lifetime management.

76

4.3 Implementation

eeeeeeeeeeeeeeeeee

ssssssssssssss

ssssssssss

sessseseseeesesseseseeeses

sesssesdssssesdsedsesdssssesdsed

nnnnnnnnnnnnnnnnnn

sssssds

esseeseseeessessssedsssses

esseeessesssseeeseseeessesssse

)sdssseesesssssse)s)ss)sssssde

s)sess

eeessessssersressssdseseeessessssedssssess)sesrsedsss

eeessessssedss)sdsssseseeessessssedss)sdssss)sesrsedsss

eeessessssedssssesssssssds es eeessessssedssssess)sesrsed�

sssssdssssss

eeeeeeeeeeeeeeeeeeeeeee

eeessessssedsssses

sssss

ssssds

seessesssseosssssessss esosssssesssosssseeos eees�

eeeeeeeeeeeeeeeeeeeeeeee

eeessessssedsssses

sssss

ssssds

essgrsssegsgosssgoersssgrgsesssssee

seessesssseosssssessss esosssssesssosssseeos eees�

eeeeeeedeed

seee

esssss

essss

Figure 4.10: Condensed class diagram of the Storage namespace. See appendix A on
page 103 for the full version.

The GlobalInformationStorage loads all information retrieved from an information set

XML file into the memory and functions as the central information database. It is started

by the MetamorphRuntime and responds to information requests sent by local information

storages. Additionally, it also receives updates to the information it holds and allows the

addition of new information. Updates to information are broadcasted to all ClientRuntimes

that are connected with the global information storage via the MOM.

There already is a component called InformationManager in the existing system upon

which the GlobalInformationStorage was based. It serves the same purpose as the

global information storage introduced here and could be extended to replace the current

GlobalInformationStorage altogether. The global information storage was created to

have direct and full access to the information manager to allow adjustments necessary for

the Metamorph interaction concept without unintentionally breaking the existing system’s

77

4 Prototypical Implementation

functionality, as it was not clear at the beginning how much modification needed to be

applied to the existing information manager.

The LocalInformationStorage, on the other hand, is empty when a new client is started

and fills its cache just-in-time on-demand. This component was added in order to avoid

delays introduced by requesting information using the MOM after the first request, while

still retaining a central information repository. The caching strategy (or, if there should be

caching at all) is up to the respective implementation. For the prototype, all requested

information is cached indefinitely. This suffices for a proof-of-concept as the amount of

information objects is expected to remain comparatively small for the use cases.

public override Information this[string infoId]
{
 get
 {
 if (!informationDictionary.ContainsKey(infoId))
 {
 // Add dummy object which is updated when the information has been retrieved
 Information information = new Information(infoId, isRemotelyLoaded: true);
 informationDictionary.Add(information.ID, information);

 onInformationRequested(
 new InformationStorageEventArgs(StorageKind.Remote, CurrentLanguage, infoId)
);
 }

 return informationDictionary[infoId];
 }
 set { informationDictionary.Add(value.ID, value); }
}

Listing 4.3: The indexer for an information object in the LocalInformationStorage class.

As described in section 4.3, dummy information objects can be created with just an in-

formation ID not containing any data. This enables the LocalInformationComponent to

send a request in the background to fetch the actual data from the global storage and

later update the information object with the received data. It is necessary for the local in-

formation storage to return information objects that have not yet been cached or received

without blocking as it cannot be said how long it takes to retrieve the information. See listing

4.3 for the indexer of the LocalInformationStorage that realises this behaviour. Notice

that the LocalInformationComponent is informed about a request by a call to the method

onInformationRequested(...), which fires the respective event that the local information

component subscribed to.

78

4.3 Implementation

4.3.3 Interaction

The classes from the Interaction namespace represent the basic ingredients for the

Metamorph interaction concept to work and are illustrated in the class diagrams in figure

4.11.

rrrrrrrrrrrrrrrrrrr

sssss

ssssss

dssdddsdsdddsssdddsds

seeddesesdeeeddsesdddeeeddesesdeeeddses

sdddsdesss

eesesedsdddeeesdsdesderssssedd

esssdesseeeddesesdedddeeeddesesde

esssdessesdedddsee

rsesdss

dssdddddddss

ssssdesdedddddddssdd)d)dddsdsdssd

dsssssdeesdedddddddss

dddddddddddss

nseeeeddesesdedddddeeeddesesde

eeesdsdesderssssedddd

ssdddddddddss

lseddsdddddddds

esssdeesdedddddddss

ddsseseeeddesesdedddddddss

sdsees

rsessseseddddrsdesesdddssdddesddddsdseersesssd

ssdddesddddddesderdseesdssd dd ssdddesddddddesde�

eeddrsessseseddddrsdesesd dd ssdddesddddsdseerse�

sssessdrsdss

eeeeeeeeeeeeeeeeeeee

ddsedsdedsssss

ssssss

drdsddrdseesddddsrdsddddesderdseesd

rsesdss

ssessseseddddrsdesesdddddddss

sesessdddesdddddddddddss

seddrsessseseddddrsdesesdddddddss

rerreerrerreereer

eeesdesds

sdddsdesss

gggggggggggggggggggg

gggggggggggggggggggggg

ggggggggggggggggg

tggtggggtgttggggggggtgttggggg

rsesdss

gtgggtgttgggggddgggdggd

dggdtgggggddgggdggd

gggggglttglgdddggggggt

gglgdglttglgdddggggggt

ggtggtlttglgdddggggggt

essdddesdddddsdss

Figure 4.11: Condensed class diagram of the Interaction namespace. See appendix A on
page 103 for the full version.

The IPickAndDroppable interface has to be implemented by all GUI components that

should be pickable and droppable. It provides methods that indicate what is allowed and

handle the operations that take place when a Pick-and-Drop interaction is being executed.

The InteractionMediator and the various action triggers heavily rely on this interface to

perform the necessary actions for a pick and drop operation without having to know any UI

component-specific details.

79

4 Prototypical Implementation

protected void initPickAndDrop(bool isDroppable, string componentID)
{
 PickDropUIElement.AllowDrop = isDroppable;
 this.ComponentID = componentID;

 InteractionMediator.Instance.Add(this);
 cursorTrigger = new CursorActionTrigger(this);

 // Highlight GUI component when something is dragged that may be dropped here
 InteractionMediator.HighlightDropTargets += highlightDropTargets;
 InteractionMediator.StopHighlightDropTargets += stopHighlightDropTargets;
}

Listing 4.4: The standard initialisation of a pickable and droppable GUI component.

BasePickAndDroppable is an abstract base class that implements IPickAndDroppable

and offers some common functionality like the initialisation of the Pick-and-Drop capabili-

ties with a CursorActionTrigger, as shown in listing 4.4, which needs to be added locally

to every GUI component (cursor-based interaction requires a graphical UI). It also sub-

scribes to the InteractionMediator events used to highlight all GUI components that are

valid drop targets during a drag operation and implements the default behaviour of adding

a DropShadowEffect to the PickDropUIElement – which is the property defined in the

IPickAndDroppable interface to identify the pickable and droppable GUI component.

The binding link between input interpretation and triggering the actions to execute is the

InteractionMediator. It is a singleton object that holds references to the clipboard and

the information storage. The action triggers reference the mediator and use it to trigger

actions like picking up an item, dropping an item, retrieving information items, etc. The

mediator also offers events to which all UI components subscribe in order to highlight them

when an information item is being dragged that may be dropped on them – but only if the

drop is valid after checking the available representations of the information.

For the prototype, the InteractionMediator executes the triggered actions and sends two

kinds of input via the MOM: An InteractionInput and a DialogInput. These messages

are received by the fusion and the DialogManager without causing an effect currently.

When the system is fully adapted to the interaction concept, by modifying the fusion and

the dialog manager, these messages will be interpreted and executed in those components

instead. See section 4.4 on page 84 for more details on future work.

80

4.3 Implementation

rrrrrrrrrrrrr

ssssssssssssss

ssssss

rsssssrssrsrrsssssssrrrsssssrs

rrrrrrrrrrrrrrrr

ssssrrrssrrss

sssss

rsssrss

rsssssssrsrsrssrrssrrsrsrssrrss

rssrsssssssrsrsrssrrssrrsrsrssrrss

rssrsrrrssrrssrrsrsrssrrss

rssasssrsrrrssrsssrssrrssrrs rs rss�

rssrssrrssrrssrrsrsrssrrss

rssrsssssrsrsrssrrssrrsrsrssrrss

rssrsrarsrrrssrsssrssrrssrrs rs rss�

rrssssdssrrrsdssrrsrsdrss

rrrrrrrrrrrrrrrrrrr

ssssrrrssrrss

sssss

rsssrss

rrdssdrsssrrsrsdrss

rrdssdssdsrrsrsdrss

rssdssarssrdrsssrrsrsdrss

rssdssarssrdssdsrrsrsdrss

rssdssarssrddssrrsrsdrss

rssdssarsrrrrsrsdrss

rssdssarrdssdsdsddssrrrrarrrsrsdrss

rssdssarrdssrrdsrrsrsdrss

rssssrssrrrsrsdrss

rrrrrrrrrrrrrrrrrrrr

ssssrrrssrrss

sssss

rsssrss

ddssdsrrssrdsrssrasrssssrrsrsdrss

sssrrrsdssdrsssdssdssrrrsdssrrsrsdrss

Figure 4.12: Condensed class diagram of the Trigger sub-namespace. See appendix A on
page 103 for the full version.

Action Trigger

The action triggers encapsulate input modality-specific details and call methods on the

InteractionMediator to act upon certain input triggers as defined by the Metamorph

interaction concept in section 3.3.4 on page 43. The base class ActionTrigger simply

offers access to the InteractionMediator, which is needed by all action triggers. Aside

from that, the different input modalities have nothing in common and are highly specialised.

Three input concepts have been implemented for the prototype: Cursor-based inputs,

speech input (ASR) and mouse gestures.

Cursor-based inputs by mouse, pen, stylus or touch input devices allow dragging and

dropping in the traditional sense. This is implemented by subscribing to the drag & drop

events provided by the WPF components and using the DragDrop class to perform the

actual drag & drop. The pick action is triggered by dragging an information item over a dock

slot and dropping it there.

ASR is implemented utilising the SpeechRecognizerEngine provided by the .NET Frame-

work and already utilised by the existing system. The action trigger class simply pro-

vides building capabilities for the grammars according to the Metamorph interaction con-

cept. These grammars are then loaded and handled by the existing ASR component

81

4 Prototypical Implementation

in the system, which has been extended to support Pick-and-Drop actions and call the

InteractionMediator to execute them. For the prototype, the speech recognition is lim-

ited to the local UI component, since the fusion as well as the dialog manager would have

to be modified to allow ASR to work across device borders.

The third action trigger implements mouse gestures using the approach explained in sec-

tion 4.1.2 by subscribing to the GestureRecognized event and interpreting the mouse

movements according to gestures defined by the Metamorph interaction concept.

4.3.4 The Dock Concept for Graphical User Interfaces

Figure 4.13: A Metamorph dock holding two information items with text and picture repre-
sentations as rendered in the ClientRuntime.

The Metamorph Dock is depicted in figure 4.13. It is realised as a WPF UserControl

that is composed of six individual slots. Every Slot is composed of existing WPF GUI

components like a ToggleButton, a Label and the likes. Furthermore, the Slot class

implements the IPickAndDroppable interface as introduced in section 4.3.3, meaning the

slots themself handle Pick-and-Drop interactions. The Dock, however, subscribes to the

clipboard’s events and updates the slots when the information is updated or the clipboard’s

state changes (e.g. when an information item is removed on another client).

Extending the Dialog and Interaction Output for Pick-and-Drop

The schema for the interaction output needed to be extended by the abstract clipboard and

new attributes on all pickable and droppable UI components to indicate their level of support

for Pick-and-Drop. Similar additions have been made to the dialog output schema on the

abstract UI level.

82

4.3 Implementation

Listing 4.5 illustrates the addition of the abstract clipboard to the interaction output schema

as a component at the root level of the interaction output. The slots are given as sub-tags

with their ID, selection state and any information they hold as value.

<!-- the abstract clipboard -->
<xs:complexType name="Clipboard">
 <xs:sequence>
 <xs:element name="slot" type="Slot" minOccurs="6" maxOccurs="6" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="Slot">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="id" type="xs:integer" use="required" />
 <xs:attribute name="selected" type="xs:boolean" use="optional" />
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

Listing 4.5: The schema extension in the InteractionOutput for an abstract clipboard.

Attributes called isPickable, isDroppable and overrideNominator are shown in figure

4.6 where they extend the text UI component exemplarily. The first two are used to deter-

mine if picking or dropping is allowed on the respective UI component, whereas the last

determines if the nominator of the UI component shall change upon a drop.

<!-- the basic types -->
<xs:complexType name="Text">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="objectID" type="xs:string" use="required" />
 <xs:attribute name="informationID" type="xs:string" use="required" />
 <!-- ... -->
 <!-- Start Metamorph -->
 <xs:attribute name="isPickable" type="xs:boolean" use="optional" default="false"/>
 <xs:attribute name="isDroppable" type="xs:boolean" use="optional" default="false"/>
 <xs:attribute name="overrideNominator" type="xs:boolean" use="optional"
 default="false"/>
 <!-- End Metamorph -->
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

Listing 4.6: The InteractionOutput schema that defines a text component on the concrete

level.

The new attributes can then be added to the interaction output. Listing 4.7 shows an ex-

ample interaction output extended by the Metamorph interaction concept (the Metamorph

additions have been marked yellow).

83

4 Prototypical Implementation

<interactionOutput dialogID="MM-1.0">

 <outExpression deviceID="Experimental_Platform" deviceComponentID="TouchScreen"
 hasClipboardRepresentation="true">
 <dialogAct>
 <text objectID="textfield1" informationID="apple" isEditable="true"
 isPickable="true" isDroppable="true" overrideNominator="true"
 nominator="Text 1:">
 Apple
 </text>
 </dialogAct>
 </outExpression>

 <clipboard>
 <slot id="1" />
 <slot id="2" />
 <slot id="3" />
 <slot id="4" />
 <slot id="5" />
 <slot id="6" />
 </clipboard>

</interactionOutput>

Listing 4.7: The interaction output from section 4.1.1 extended by the Pick-and-Drop at-

tributes.

First of all, the attribute called hasClipboardRepresentation has been added to the

outExpression in listing 4.7. It indicates whether the given concrete output expression

shall have a concrete clipboard representation, like the GUI dock for visual outputs or an

auditive dock for aural outputs. Second, the text UI component has been extended by

the Pick-and-Drop attributes defined by Metamorph to indicate that the text UI component

should be pickable and droppable elements in the UI, with the nominator adapting to the

dropped content.

The backing classes were extended by corresponding properties for the new attributes and

are initialised from the interaction output XML. These backing classes are then queried by

the UI component classes like GwText to check if pick or drop is allowed. This enables an

adaptive component behaviour according to the interaction concept.

4.4 Interim Conclusion

This section concludes the prototypical implementation of the Metamorph interaction con-

cept. It has been shown how the interaction concept was translated into a system design

and realised in the existing system in the output and input device components. Future

prospects concerning the prototype are described in section 6 on page 102.

84

4.4 Interim Conclusion

The prototype took the requirements described in section 3.1.2 on page 25 into consid-

eration: A pick & drop-like interaction was realised that allows the handling of multimodal

information items, which are stored in an information storage that is globally available in the

distributed system. The information items transition into the matching representation based

on the UI components they are dropped upon, thus taking the context into account.

A global clipboard that is synchronised across devices allows the storage of multiple in-

formation items. The user can cross device borders and execute other actions after an

information item has been picked up and stored in the clipboard. He is also free to change

input modalities while working with the Metamorph interaction concept at any given time.

Feedback has been implemented only for the visual channel in the prototype, but was

designed to be decoupled from specific views. It is possible to add auditive feedback to

indicate drop targets or add additional views to make the clipboard visible to the user.

This can be achieved by utilising different output modalities or a combination of output

modalities.

85

5 Evaluation

This chapter details the expert evaluation that has been conducted to gain further insight

and collect feedback on the effectiveness, efficiency, learnability and usability of the inter-

action concept developed.

After the prototype has been implemented, the expert evaluation was conducted and is de-

scribed in the following sections. In this evaluation, several experts have been interviewed

on their impressions and opinions about the interaction concept demonstrated using the

prototypical implementation. This was arranged to study the expectations and reactions of

the experts concerning the presented interaction concept. The evaluation was done during

the course of one week and took place in a separate room at the University of Ulm.

5.1 Participants

A total of five experts, all male, between the ages of 28 and 33 (with an average of 30) have

been interviewed to gain further insight and feedback concerning the interaction concept

and its prototype. According to Nielsen [Nie00], five participants provide sufficient results

for a first evaluation iteration.

These five experts came from the fields of human-computer interaction, ubiquitous com-

puting, multimodal interaction, distributed systems and speech interaction. All participants

were research associates recruited from the University of Ulm. Only one of them had prior

experience with the existing system.

5.2 Test Setup

The tests were conducted on a single computer utilising two monitors to simulate two dif-

ferent devices. The kinds of devices were indicated by small stand-up displays.

87

5 Evaluation

Figure 5.1: The computer setup for the expert evaluation. Small paper stand-up displays
(see the picture on the right) were used to indicate the actual devices intended
to be used by use case V.

Figure 5.1 shows the test setup and the stand-up displays used to indicate the devices used

in the use cases. Up to two instances of the client runtime were used to demonstrate the

use cases detailed in section 3.2 on page 27. Speech input, mouse and mouse gestures

were available as input concepts. A microphone was used to record the interview with the

experts. Furthermore, each expert was asked to fill out a questionnaire.

5.3 Procedure

At the beginning of each interview, the expert had to fill out the first page of the question-

naire, which gathered some personal facts like age, academic degree, the expert’s field of

expertise, his competence in various knowledge fields related to this work and an agree-

ment that allowed using the interview in this work.

Afterwards, the use cases from section 3.21 were explained and demonstrated to the ex-

pert, one by one. The experts were encouraged to state remarks whenever they wanted to.

For each use case, some questions were asked to learn more about the expert’s opinion

on some specific aspects demonstrated by the use case.

Lastly, the expert was asked what he regarded as the most important aspects to consider

when developing a multimodal interaction concept like the one presented in the evaluation.

Additionally, the expert was asked to rate some aspects of the interaction concept in the

questionnaire and to extend an XML example of an interaction output by marking an UI

component as pickable and droppable and to extend it by a clipboard.
1With the exception of use case III, as its main difference lies in the devices used, which were not available for

the prototype. So no new insight would be gained by this use case.

88

5.4 Statements of the Experts

5.4 Statements of the Experts

The feedback that has been received by the experts is summarised in this section, starting

with the overall ratings the experts attributed the prototype. Figure 5.2 depicts the aver-

age ratings collected by the questionnaire for the general usefulness of the use cases, as

well as the consistency, efficiency, effectivity and the learnability of the prototype (with 1

representing “bad” and 5 “very good”).

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1

Usefulness

Consistency

Efficiency

Effectivity

Learnability

Figure 5.2: The average ratings attributed to several aspects of the interaction concept.

The usefulness was rated high with an average rating of 4.4 out of 5, confirming the moti-

vation for this work to provide a multimodal Pick-and-Drop-like interaction concept across

devices. Consistency, efficiency and learnability have all been rated above the average

with a rating of 3.6 out of 5, but there is clearly potential for improvement here. Finally,

the effectivity was rated slightly higher with a rating of 3.8, which also leaves some room

for improvements, but shows that what can be achieved with the interaction concept was

regarded generally valuable. The following sections will go into detail on the feedback the

experts gave, providing insight into and reasons for these ratings.

89

5 Evaluation

Overall, however, these ratings are a reassuring, positive feedback for the interaction con-

cept, proving that it has the potential to contribute to a better user experience and offers

beneficial interaction options.

Based on the experts’ statements, eight aspects for discussion are highlighted in the re-

mainder of this section.

5.4.1 Visibility

The visibility of the interaction options and feedback to show what result has been accom-

plished by the user was considered a very important aspect during the evaluation by the

experts. This affected the ratings for learnability.

Figure 5.3: The prototype showing a grid view from use case II where the user can pick
food. Note the blue glow highlighting the item under the mouse cursor.

When being asked how to indicate pickable or droppable UI components to the user, all five

experts stated highlighting the UI component with a coloured border as a possible solution.

90

5.4 Statements of the Experts

This affirms the chosen solution with glowing borders as shown in figures 5.3 and 5.4. All

five experts considered the highlighting solution, as realised by the prototype, to be good.

One expert noted that it would be more convenient to highlight pickable UI components

all the time and not only on user demand (e.g., by hovering with the cursor over the UI

component as shown in figure 5.3). Having a subtle highlight that is always visible would

avoid that the user has to search for pickable information items.

Figure 5.4: The prototype showing a nutrition schedule. Note the highlighting of valid drop
targets (blue glow) and the highlighting of the GUI component the mouse cursor
hovers over (green glow) to indicate the currently targeted drop location.

Four experts emphasised the necessity to encourage the user to “grab and move” the

pickable UI components – in contrast to simply clicking/tapping them – when using cursor

input. One expert stated that graphical objects customarily encourage a user to move

them, consequently using some kind of graphic to indicate movability would follow known

conventions.

91

5 Evaluation

Another expert suggested playing an animation on cursor-over, which implies that the UI

component is “loose” (and thus movable), to encourage users to drag the UI component.

Lastly, it was noted that it is very important to clearly distinguish pickable text from hyper-

links to prevent user confusion.

Using symbols to indicate possible representations on pickable or droppable GUI compo-

nents was suggested by four experts, supposable on a cursor-over to avoid cluttering the

GUI. This would visibly communicate the available representations on pickable components

and the transition that will happen on a drop. The latter would help the user to understand

and predict the system’s behaviour better, which is a desirable attribute [Nor02].

Figure 5.5: The symbols used to indicate the available representations in the dock.

The symbols in the dock below the information item’s name serve a similar purpose (see

figure 5.5), but they are limited to the dock. The experts stated having the symbols appear

near the pickable or droppable GUI component would be more convenient. Furthermore,

one expert noted that the symbols in the slot are only visible when the user explicitly picks

an information up using the dock, but not when directly dragging and dropping an item with-

out using the dock. Showing a preview of the currently dragged item in a dock slot during

a drag was suggested. This might be a suggestion worth implementing, as it makes the

possibility to drop something into the dock clearly visible. Also, having a preview that visu-

alises what will happen when the user drops an item into a slot, again helps to understand

and predict the system’s behaviour. One expert suggested having an icon preview directly

at the cursor while dragging. This could be enhanced with small icons for representations

below the information item’s icon as long as this does not confuse the user [WCO95].

Three experts suggested highlighting the whole area of the drop target (e.g. with a specific

background colour and/or pattern). The practicability of this suggestion is constrained by

the respective GUI component: While it may be sensible to change the background colour

of a text component, it’s not effective to do the same for a picture or video component, as

this would overlap the content.

92

5.4 Statements of the Experts

5.4.2 Multimodality

Having multiple input modalities at one’s disposal was overall well received by the experts.

On the one hand, four experts found it to be generally advantageous, as it offers each user

the freedom to interact with the application in the user’s preferred way. This confirms the

hypothesis from chapter 3, that users prefer to communicate multimodally.

On the other hand, three experts also noted that the kinds of modalities that make sense

are application and device-specific. For example, a typical user might expect and use

gestures on touch devices like a tablet, but not on a desktop computer utilising a mouse.

Additionally, the context needs to be considered as well. The option to deactivate certain

modalities is necessary for cases where they might be improper due to environmental or

security reasons.

When offering many different input modalities, three experts found the need to indicate

in some way what input concepts are available to the user at any given time. Because,

obviously, when the user has a fragmentary mental model of the application and does not

know or expect the available input modalities, he cannot utilise them. The user may even be

confused by the system’s behaviour, for example when using the system while speaking out

loud or with a colleague about what he is doing, accidentally triggering a speech command.

One expert expressed that a combination of modalities is favourable, like combining speech

commands with body gestures in a “Put That There”-style of interaction. This was touched

upon in section 3.3.6 on page 48, where it was ascertained that a combination of modalities

is in some cases even necessary to complement the expressiveness of the diverse input

modalities.

A very interesting suggestion was made by one expert concerning the decoupling of the

abstract interaction concept from the modality-specific mappings: He suggested using a

model-based approach for the input modality mappings to the Metamorph actions. When

realising speech input, the actual words or phrases used to trigger the actions could be

specified in the model files. These model files could then be changed and dynamically

reloaded at runtime to allow adaptive speech recognition. This would allow, for example,

the easy addition of a natural language interface to the speech recognition or localised

speech interfaces.

However, the feasibility of this approach has to be verified first, as it would need a very pow-

erful and flexible framework for modelling the many different input modalities like mouse,

93

5 Evaluation

keyboard, gestures, speech, etc. This approach runs the risk that the framework needs to

implement most of the input modality mapping specifics so that the flexibility of having a

model-based approach is very limited.

5.4.3 Transient Media Types

The majority of experts (three out of five) saw no problems when transitioning from a static

information representation to a transient representation as long as it is a conscious decision

made by the user. In this case, it was argued that the user knows what to expect since he

should be familiar with the audio and video media types – even though he may not be

familiar with these media types in the context of transitioning representations.

One expert stated that it was necessary to offer options to navigate the transient media,

which is already provided by the system. He also suggested allowing the possibility to

show several representations at the same time, side by side, like having a text instruction

next to the video instruction for reference. This enhances the multimodal aspects of the

concept and might be worth investigating.

All experts agreed that a cut operation in a distributed system should be safeguarded by

a warning dialog because there might be devices that do not offer storage space for the

information data, which could lead to a potential data loss. Another proposed solution was

to centrally store the information in a cloud-like storage and to never delete it from there,

even when the information is deleted from every single device in the distributed system.

This is the current approach by the prototype.

Disallowing the cut operation was rejected by two experts, stating that it would be incon-

venient when the user has to copy and delete an information manually when he wants to

move it. This argument is reinforced in a distributed system with many devices, which would

multiply the manual workload by the number of devices affected. Another expert suggested

having a history of all actions, allowing the user to undo them as a safeguard.

One expert expressed a concern about content mismatch between different representa-

tions, like a text deviating from the spoken audio representation of the text. This violates

the user’s expectation to get exactly the same information in another representation and

should be prevented. Even though this is a valid concern, it does not affect the interaction

concept itself.

94

5.4 Statements of the Experts

5.4.4 Hierarchical Information

For hierarchical information, four experts said they expect the system to remember and

jump to the current position of the information even when it is transitioned into another

representation. Three experts said that the current position should be automatically syn-

chronised with the whole system. Two experts even suggested using an eye tracker for

information items like an eBook to capture the current paragraph or sentence the user was

last looking at – noted however that this is not trivially realisable. One expert had the idea

to support user-defined bookmarks for hierarchical information items, increasing the conve-

nience of the system. Overall, the majority of experts rated the need to address and jump

to positions inside of hierarchical information as very important.

When transferring hierarchical information to other devices, like a mobile device, two ex-

perts stated they expect the system to transfer the complete information by default. Ad-

ditionally, however, the user should have the option to transfer only selected parts by the

pick operation due to space constraints. One expert noted that this should be the default

behaviour when the user explicitly picks a subset of the information, drawing a comparison

to dragging a selected text in a word processor. This should be investigated in a usability

study.

Having a mismatch of the information structure for different representations was noted as

a problem by three experts. Different representations might offer different levels to refer-

ence, like a book being divided into chapters, sections, paragraphs and sentences, whereas

movies are most often only divided into chapters. This mismatch is inherent to the different

representations and is not trivially solvable. Very good semantic annotations for all repre-

sentations would be needed to handle this adequately, but one expert raised the question

of the benefit for such a detailed match.

5.4.5 Dynamic Nominators

The concept of dynamic nominators received mixed reactions, with three experts being

intrigued by the idea, one stating that its usefulness depends on the application. All three

agreed that there are cases where it might be meaningful to add a higher level semantic

to the content through a dynamic nominator. Two experts emphasised the importance of

semantic validation, so the content fits the context. For example, dropping a location into a

list of food should be disallowed for the concept to work without seeming out of place.

95

5 Evaluation

Two experts expressed the need for an adequate presentation of the feature, one stating

that visual labels should not be used as dynamic nominators, since the user expectation is

that labels do not change. Instead, the dynamic nominator should be presented alongside

the content to indicate its close relation to it. Both experts suggested using a graphical

presentation for this concept in use case VI, having a graphical backpack with individual

items being categorised by the dynamic nominators inside the backpack. This is also an

example for the need to support hierarchical information structures.

Figure 5.6: Use case VI as modelled in the prototype. The left side shows the trip planner
interface on a computer whereas the right side is supposed to show the loca-
tions and gear on a tablet. Notice that the labels in the backpack on the left side
are dynamically adapted to its content.

During use case VI, which showcased the dynamic nominators, four experts also noted

that the information items should be directly referenceable using the speech interaction

(e.g. “Pick up apple” instead of “Pick up item 1”). They argued that this is more intuitive and

feels more natural to the user. This also remedies the possible problem of referencing the

UI components through their labels, when the label changes on drop actions – as it does in

the prototype (see figure 5.6).

To enable this, the speech input would have to be extended to identify UI components

based on their contents, with ambiguities being resolved by standard mechanisms used in

today’s speech interfaces (usually by presenting a list of alternatives). Three experts also

said that the UI components should be referenceable by their position, like “the first text

field under trip”.

96

5.4 Statements of the Experts

5.4.6 Interaction

Concerning the interactions in the concept, two experts pointed out that being able to di-

rectly pick & drop an information without using the dock is of significant importance for user

convenience and efficiency. This possibility was already mentioned in section 3.3.1 on page

30, but was not implemented in the prototype except for pick & drop with a mouse.

Providing feedback on the same communication channel that was used for input was sug-

gested by another expert. In other words, the system should give auditive feedback to

speech input and visual feedback to cursor-based inputs. This is another case that would

have to be determined by extensive usability studies with end users to determine its impact.

One expert found the swipe gesture to the top confusing when the dock is located at the

bottom of the screen, as it seemed illogical to him. His natural mapping of the gesture

was not that of picking something “up”, but rather to “throw” something into the dock for

storage. It needs to be evaluated, with a statistically significant amount of end users, what

interpretations there are amongst the end users and how they are distributed.

Another important point to consider was the ability to directly drop an information item onto

a device, rather than an UI component. Two experts argued that this is what the user

wants to achieve eventually in many cases. It is also more convenient when dropping an

information item on devices with a single main functionality, like an mp3 player. Using the

dock or clipboard is, after all, only a means to an end. A default information representation

(and potentially a default program for more complex devices) to use has to be defined for

each device in this case.

5.4.7 Generally Important Aspects

At the end of the evaluation, all experts were asked what they considered the most impor-

tant aspects to consider when devising a multimodal interaction concept that works across

device borders.

Being able to drop an information directly onto a device is closely related to what one expert

considered an important aspect: That everything has to work seamlessly. Allowing to drop

something onto a device, like a wall-mounted touch screen, is closer to what the user wants

to achieve in many cases. It feels more natural and minimises the interactions necessary

to achieve the user’s goal, which is another aspect of a seamless interaction concept.

97

5 Evaluation

Two experts stated that a good interaction concept supports the user in achieving his goals.

One expert emphasised that usability studies with end users are a crucially important part

to come up with an interaction concept that matches the user’s needs. For example, it is

important to know the vocabulary most users naturally use to create a speech recognition

which is intuitive to use. The same applies for mouse, touch and body gestures.

The modalities for input and output need to fit the use case as well, which was already

touched upon in the last section for input modalities: The environment and context needs

to be taken into consideration when determining which input modalities make sense under

the given circumstances. For output modalities, this means that the information needs to

be modelled in a way that supports the use cases. Another expert said that the information

should be semantically annotated and linked in a manner that is suitable for the use case,

which is more of a technical problem that contributes to the usability of the interaction

concept. Semantical annotations of the information were mentioned several times and

would enhance the interaction concept in a meaningful way since it constrains the user’s

interaction possibilities by prohibiting invalid actions [Nor02].

5.4.8 Extending the Interaction Output

The experts where asked how they would extend a simplified interaction output example in

XML, which is shown in figure 5.7. This question was aimed to uncover problems potential

developers may have when working with the XML extensions introduced by the interaction

concept. Four experts added two separate attributes, one for pick and one for drop, to the

text components. This approach matches the pickable and droppable marker introduced in

section 3.3.1 on page 30.

Interestingly, three experts asked at first whether the UI components should have to be

marked at all. They suggested that all UI components should always be pickable and

droppable, but realised after some thought that the pickable and droppable elements of a

user interface are rather application-specific. Still, it is curious that three out of five experts

intuitively had the same mindset at first.

One expert then came up with the idea to automatically deduce which UI components

should be pickable and/or droppable, based on a semantic description of the UI or by

extracting available metadata from existing systems. The expert named YouTube as an

example: The system could determine that the video is an information that is pickable

98

5.5 Interim Conclusion

<interactionOutput dialogID="example_dialog">

 <outExpression deviceID="PC" deviceComponentID="TouchScreen">
 <dialogAct>
 <text objectID="text" informationID="info1" isEditable="true"
 nominator="Text 1:">Apple</text>
 </dialogAct>
 </outExpression>

 <outExpression deviceID="Smartphone" deviceComponentID="SpeechInput">
 <dialogAct>
 <text objectID="text1" informationID="info1" isEditable="true" nominator="Text 1" />
 </dialogAct>
 </outExpression>

</interactionOutput>

Figure 5.7: The XML example from the questionnaire, showing two blocks of output expres-
sions for different devices containing one text UI component.

and offers a video, audio and possibly a textual representation (when closed captions are

available).

Aside from this, two experts suggested adding semantic annotations at this level to limit

which information items can be dropped onto what UI components or devices. This would

enable, when the information has been semantically annotated as well, to set up constraints

like information items that are semantically tagged as being food can only be dropped into

UI components that also contain a food tag in its attribute. This attribute describes what

semantic tags an information item has to possess to be dropped there.

5.5 Interim Conclusion

One strong response was the importance to verify that the interaction concept fits the prob-

lem domain and supports the user in the best way possible to achieve her goals. This is only

possible when taking the users into consideration from the beginning and by periodically

rechecking, for instance via evaluations, that everything is still going in the right direction.

Aside from the strong focus on the problem domain and the users, it has been uncovered

that there are many details that contribute (or impair when done wrong) the practicability of

a modality-independent interaction concept. The input modalities need to be visible, with

the option to deactivate them for certain contexts. Also, interactions should be concise and

work seamlessly, avoiding unnecessary steps and reacting in a smart way when the input

is incomplete (e.g. guess the best UI component when dropping an item on a device).

99

6 Summary and Future Work

Concluding this work, a retrospect of what has been discussed is given in this chapter,

followed by an outlook on some topics that may be worth pursuing in future work.

As has been elaborated in chapter 3, there are many things to consider when developing a

multimodal interaction concept: The definition and separation of the abstract actions from

concrete inputs, the design and realisation of UI components that enable and support the

interaction concept, concrete mappings that define how to trigger the abstract actions for

every supported input modality, identifying and defining meaningful feedback to make the

interaction concept visible and predictable in its usage and, finally, how to handle the prob-

lems that arise when trying to create a flexible, modality-independent interaction concept.

Another important aspect is the modelling of the information, which needs to match the

problem domain to effectively support it. This includes ensuring to have matching content

in different representations, adding semantic annotations that play a very important role

to support meaningful interactions, supporting hierarchical media to increase the utility by

many possibilities and metadata (like dynamic nominators) that can help the user to man-

age complex information in an easier way in a world that collects and aggregates more and

more information every day.

The potential to improve the user experience by utilising multimodal input and output capa-

bilites has been confirmed by the evaluation.

There are still many obstacles to overcome before all of this can be merged into a single,

cohesive, seamless user experience, but the foundations for many of these challenges

have already been laid out. As this work has proven, it is technically feasible to realise a

modality-independent interaction concept that allows the exchange of information across

device borders featuring modality-independent representations of the content.

101

6 Summary and Future Work

Future Work

The next steps would be to fine-tune the interaction concept and to enhance the prototype

based on the suggestions made by the experts. Afterwards, an extensive usability study

with end users should be conducted to gain feedback from people who are not as proficient

with computer systems as the experts are.

Another important step will be to fully integrate the interaction concept into the existing

system. The dialog management, fission and fusion have to be extended to handle the

Pick-and-Drop messages received via the message-oriented middleware. Also, these com-

ponents need to take the additional Pick-and-Drop tags and attributes in the dialog and

interaction inputs into consideration. The fission also needs to be changed to take the Pick-

and-Drop attributes into account and add a fitting clipboard representation where defined.

Adding semantics to the information storage and the UI is another point to consider. This

would add benefits concerning the usability and would allow designing the user interfaces

and interactions in a more sensible way, fitting to the problem domain and use cases.

Decoupling the input modalities and their mappings even more by utilising a model-based

approach as suggested by an expert in the evaluation is also worth investigating. The

modality-independence for input concepts is one of the corner points of this interaction

concept and decoupling it into a model-based approach could greatly increase the flexibility

and extensibility for input concepts.

Lastly, adding more input modalities to the prototype and conducting an evaluation with a

prototype system that supports more input modalities and devices would also provide more

insight and concrete evidence on the statements and feedback the experts provided.

102

A Class Diagrams

nnnnnnnnnnn

sssss

ssssssssss

iiissiiiiiiiss

iiissiiiisgsssggiiissssgg

lssiiississssssgsssssgiiilsss

lsssslsississssssgsssssgiiilsss

lssislsggssssgslsslssiiilsss

lsslslslsslssslslissssssgsssssgiiilsss

lsslslsissssssgsssssgiiilsss

lsslsslslslsslssslslissssssgsssssgiiilsss

lsslsslslsissssssgsssssgiiilsss

lsslsississssssgsssssgiiilsss

igiiissssgg

islssisiiiilsss

gsgsgssssiiissssgg

sslsissiiiiiiiss

sslsissiiiisgsssggiiissssgg

islsggssssgslsslssiiissssgg

gissssssiigessgssssglesssiiiigessgssssgless

gissssssicissiscglsisscsisigi ii cissiscgl�

lslsiiissssgg

lslslsslssslsliiissssgg

llgsslsiiissssgg

llgsslslsslssslsliiissssgg

lsissiiiiiiiss

lsissiiiisgsssggiiissssgg

csslsis

idssslssisiddiiidssi

igessgssssgddid)i)isdsssssid

sgigessgssssgisisssiddiiidssi

lsgssscltslsddiiigssscltsls

lsgsssggddiiissssgg

lstgsligsgsddiiitgsligsgs

isisssddiiidssi

cdsgss

igessgssssgisisssiiiicdsgslsgisss

ddnddnnnd

sssss

lsssis

sgsssglsiiisssslsssi

sssssislsgsseissilsssiiilsg>silsss>igessgssssg>

cittglclgiiisgs

sssslsssgiiilsss]]

sssssgsiiiigessgssssg]]

ssssssssss

ssigsiiisgs

lsslsssgssssiiilsss

igsssglsiiisssslsssi

isissicgseiiilsss

lssssislsgsseissiigessgssssgiiiigessgssssg

lssssislsgsseissigsssigiiisgs

csssislsgsseissiigessgssssgiiiigessgssssg

csssislsgsseissigsssigiiisgs

gslsgsssigiiisgs

gssslssiigessgssssgiiiigessgssssg

gssslssigsssigiiisgs

slssiiiigessgssssg

csslsis

iiiddiiidssi

sssssddiiidssi

sssssgsssddiiilsss

sssslsssidd

ssgsssgsddiiilsss

ssselsddiiidssi

gssssslsgsssddiiidssi

lsscgigssssssddiiiicgigssssss>igessgssssg>

igislceddiiisgs

igssssssdsddiiidssi

isgsssgssslssiddiiilsss

sgigessgssssgiiisiddiiidssi

sgigessgssssgisgsdsiddiiidssi

sgigssssssdsiddiiidssi

sggsssgssssslssiddiiidssi

sggsssgssslssiddiiidssi

isgsdsddiiilsss

gssslsgsssddiiidssi

gssgsssgssslsssgddiiidssi

gesssgossssslsssgsoicgigssslssolsscgigsssss�

isisssgsssissgsddiiidssi

cdsgss

igessgssssgiiisiiiigsssslsggscdsgslsgisss

igessgssssgisgsdsiiiigsssslsggscdsgslsgisss

igssssssdsiiiicdsgslsgisss

gsssgssssslssiiiigsssslsggscdsgslsgisss

gsssgssslssiiiigsssslsggscdsgslsgisss

gssssiilesss

issssslsssg>igessgssssg>

Figure A.1: Full class diagram of the Clipboard and Information classes.

103

A Class Diagrams

t
tt
t
t
t
t
tt
t
t
t
t
t
t
t
t
t

t
t

t
t

t
t

t
t

t

s
s

st
ss

st
st

ss
ss

ss
t
ss

s g
g

g
s

g
t

s
g
g
gg

g
g

gt
sgs

st
ss

t
g

s
st

s
s

ss
st

g
t
t

s
t
ss

gsr
r

rg
t
t

s
t
s

s>
s
t

g
t
g
t
ts

gsr
ss

t>
g
st

t>
>t

t
ts

sg
s>

ss
st

s
t

s
ss

sgs
t

sst
s

t
s
ss

sg
t

t
st

t
sst

s
t

s
ss

t
>

s
t

g
t
ss

gss
t

t
s

st
et

st
s
ts

t
t

g
tt

ss
g

t
sgs

gt
et

st
s
ts

t
t

g
tt

ss
g

t

gg
gg

gs
rg

g
s

g
gg

g
gg

g
g

gt
sgs

st
ss

t
g

st
st

ss
ssr

s
ts

t
t

g
t
st

s>
t
ss

gsr
r

rg
t
st

s>
t
s

st
st

ss
ssr

s
ts

t
t

g
t
t

s
t
ss

gsr
r

rg
t
t

s
t
s

st
st

s>
t
sg

t
t

ss
sgs

st
ss

t
g

st
t

s
t
sg

t
t

ss
sgs

st
ss

t
g

g
g

g
s

g
>
gg

g
g

gt
sgs

st
ss

t
g

r
t

s
s
tt

g
t
st

s>
t
ss

gsr
r

rg
t
st

s>
t
s

r
t
t>

t
s

s

s
st

dd
sgs

>t
ss

s
st

s
s

ss
st

t
>

s
t

g
t
g
t
td

ds
gs>

t
ss

ss
st

s
t

s
ss

gg
st

tt
>

s
t

g
t
s

dd
sgs

>t
ss

t
sst

s
t

s
ss

t
t

t
t

t
t

t
t

td
d

st
st

ss
ssr

t
g

t
t

t
tt

gt
st

ss
ssr

s
ts

t
t

dd
sgs

>t
ss

r
t

s
s
tt

t
sst

s
t

s
ss

dd
sgs

>t
ss

t
t
tt
tt
tt
t
t
t
t
tt
t
t
t
t
t
t
t
t
t

t
sst

s
t

s
ss

t
t

t
t

t
t

t
t

t

t
ss

ss ss
t
ss

s ss
gt

st
ss

ssr
t
s

sgs
s

t
t

s

t
s
tg

ss
t
ss

gss
t

t

r
t
t>

t
s

s

s
st

dd
sgs

>t
ss

rt
ss

st
sst

s
t

s
ss

t
t

t
t

t
t

t
t

td
d

g
t
s
st

dd
sgs

>t
ss

t
t
tt
tt
t
tt
tt

t
tt
t
t
t
t
t
t
t
t
t
t
t

t
t

t
t

t
t

t
t

t

t
ss

ss ss
t
ss

s sg
t

t
st

gt
et

st
s
ts

t
t

g
t

s
s
tt

ss
gss

t
t

s

st
et

st
s
ts

t
t

g
tt

ss
g

t
sgs

gt
et

st
s
ts

t
t

g
tt

ss
g

t

st
st

s>
t
ss

gs
r

r
rg

t
st

s>
t
s

st
>

r
t
st

t
s

gt
et

st
s
ts

t
t

sg
sr

ss
t>

st
ss

t
g

>

st
>

r
t
st

g
t
t

s
t
ss

gsr
r

rg
t
t

s
t
s

r
t

s
s
tt

s
gt

et
st

s
ts

t
t

sg
sr

ss
t>

gt
et

st
s
ts

t
t

>

r
t

s
s
tt

g
t
t

s
t
ss

gsr
r

rg
t
t

s
t
s

r
t
t>

t
s

s

s
st

dd
sgs

>t
ss

gt
et

st
s
ts

t
t

g
t
tg

t
s

s
tt

s
dd

sgs
>t

ss

rt
ss

sg
t

et
st

s
ts

t
t

t
t

t
t

t
t

t
t

td
d

g
t
s
st

dd
sgs

>t
ss

g
t
>

r
t
st

gt
et

st
s
ts

t
t

dd
sgs

>t
ss

st
t

s
gt

et
st

s
ts

t
t

g
t
>

r
t
st

dd
sgs

>t
ss

st
t

s
gt

et
st

s
ts

t
t

g
t

s
s
tt

dd
sgs

>t
ss

t
tt
t
t
tt
t
tt
tt

t
tt
t
t
t
t
t
t
t
t
t
t
t

t
t

t
t

t
t

t
t

t

t
ss

ss ss
t
ss

s g
g

g
s

g
t

s
g
g
gg

g
g

gt
sgs

st
ss

t
g

s
st

s
s

ss
st

g
t
t

s
t
ss

gsr
r

rg
t
t

s
t
s

g
st

s
s
sg

tt
ss

g
t
sgs

gt
et

st
s
ts

t
t

g
tt

ss
g

t

g
>
g

g
>
g
g
gg

g
g

gt
sgs

st
ss

t
g

st
>

r
t
st

g
t
st

s>
t
ss

gsr
r

rg
t
st

s>
t
s

g
g

g
s

g
>
gg

g
g

gt
sgs

st
ss

t
g

r
t

s
s
tt

s
gt

et
st

s
ts

t
t

sg
sr

ss
t>

gt
et

st
s
ts

t
t

>

r
t

s
s
tt

g
t
st

s>
t
ss

gsr
r

rg
t
st

s>
t
s

r
t
t>

t
s

s

s
st

dd
sgs

>t
ss

s
st

s
s

ss
st

gt
et

st
s
ts

t
t

gt
t
t

sd
ds

gs>
t

ss

g
t
tg

t
>

r
t
st

t
s

gt
t
t

sd
ds

gsr
ss

t>
gt

et
st

s
ts

t
t

>

)
st

s
s
sg
t

et
st

s
ts

t
t

t
t

t
t

t
t

t
t

td
d

gt
et

st
s
ts

t
t

g
t
tg

t
s

s
tt

s
dd

sgs
>t

ss

t
t

gt
et

st
s
ts

t
t

g
st

s
s

ss
st

dd
sgs

>t
ss

t
t

gt
et

st
s
ts

t
t

g
t
>

r
t
st

g
t
st

s>
t
s

dd
sgs

>t
ss

g
t
s
st

dd
sgs

>t
ss

>
>t

t
ts gt

et
st

s
ts

t
t

g
st

s
s

ss
st

s
gs

gt
et

st
s
ts

t
t

t
t

t
t

�

gt
et

st
s
ts

t
t

g
t
>

r
t
st

g
t
st

s>
t
s

s
gs

gt
et

st
s
ts

t
�

g
t
st

t
s

sg
st

t
s

t
tt
t
t
tt
tt
t
t
t
t
tt
t
t
t
t
t
t
t
t
t

t
sst

s
t

s
ss

t
t

t
t

t
t

t
t

t

t
ss

ss r
t
t>

t
s

s

s
st

dd
sgs

>t
ss

)
st

s
s
st

sst
s

t
s
ss

t
t

t
t

t
t

t
t

td
d

g
t
s
st

dd
sgs

>t
ss

st
t

s
t

r
ss

t
t

tt
sst

s
t

s
ss

g
ts

tt
dd

sgs
>t

ss

Figure A.2: Full class diagram of the Synchronization namespace.

104

eeeeeeeeeeeeeeeeee

ssssssssssssss

ssssss

ggsgggsggggggggggsggggssgsgsssssgg

ggsgggsgggggggggggggsgggsgsssssgg

sgsssgssssssess gs gssssegsseegeessegsessgsesgses gsggesgs�

gseessssss

sesssgsgsggesgssgsgsggesgs

sesssgsgsessgsesgssgsgsessgsesgs

nnnnnnnnnnnnnnnnnn

gsseess

ssssssggsssgsseesgsggeesessseggsessgs

esseesgsggeesessseggsessgs

essseeeeggeeeessssggeesessseggeeseesgsggeesessseggees

essseeeeggeeeessssgeseesggsesssgssseeees gs geseesgg�

essggeesesssegeesgsggeesessseg

>>nnnnnnnnnnnnn>>n>>>>nnnn>>nnnn>n>>>>nnnn>nnnnn>>

essgeeeessssggeesessseggeeseesgsggeesessseggees

essgeeeessssgeseesggsesssgssseeees gs geseesggsesssgs�

ggeesessseggsessgsee

egggeesessseggsdessssseesgsdess

egggeesessseggssdesssseesgsdess

egggeesessseggsessgsssssssseesgsdess

l>nnnnnn>nl>lnnnlnn>ln>>>>nnnlnn>

desssseesgsseesse)s)sedsssesse

gdsgss

ggeesessseggsdessssssgsggeesessseggsessgsgdsgsrsgssss

ggeesessseggssdesssssgsggeesessseggssdessssgdsgsrsgssss

ggeesessseggsessgsssssssss gs ggeesessseggsessgsgdsgsrsgs�

gssssssgeess

eeeeeeeeeeeeeeeeeeeeeee

ggeesessseggsessgs

sssss

ssssss

sgeesessseggssssegsses gsgssssegsseessssgges ggee�

gseessssss

sesssgsggeesessseg

gsseess

essggeesessseggssessssssegees gs gsessssssegessss�

gesssggeesessseggsessgsee

gsggsssssslslssegsggesgseesgssees

desssseesgsdess

eeeeeeeeeeeeeeeeeeeeeeee

ggeesessseggsessgs

sssss

ssssss

ggsgggsggggggsgsgggggsggggsgsssssgg

sgeesessseggssssegsses gsgssssegsseessssgges ggee�

gseessssss

sesssgsggeesessseg

gsseess

essggeesessseggssessssssegees gs gsessssssegessss�

esesssggeesessseggsessgseese)s)sedsssesse

sessgesggeesessseggssseesgsdess

gsggsssssslslssegsggesgseesgssees

desssseesgsdess

eeeeeeedeed

ggee

esesss

gesss

Figure A.3: Full class diagram of the Storage namespace.

105

A Class Diagrams

rrrrrrrrrrrrrrrrrrr

sssss

ssssss

dssdddsdsdddsssdddsds

seeddesesdeeeddsesdddeeeddesesdeeeddses

sesesedsdddeeesdsdesderssssedd

seesdsdesdettedtedddeeesdsdesdettedte

tssdeddeseesd dd psdesdesdppsedseepd epsdppespdddd�

pdddsdesss

eesesedsdddeeesdsdesderssssedd

eeesdsdesdettedtedddeeesdsdesdettedte

esssdesseeeddesesdedddeeeddesesde

esssdessesdedddsee

rsesdss

pssdddddddss

ssssdesdedddddddssdd)d)dddsdsdssd

dssdddsdsdesdessseessdddddddss

psssssdeesdedddddddss

pddddddddddss

esedddddepsdppespddddsdss

eseeeeddesesdedddddeeeddesesde

dsesssesepssddsspddddsdesesdddddddss

eeesdsdesderssssedddd

depsdppespdddpdesdeddseesdssdddddddss

psdpdddddddss

lseddsdddddddds

esssdeesdedddddddss

eedddsesssesepssddsspddddsdesesdddddddss

ddsseseeeddesesdedddddddss

sdsees

dsesssesepddddsdesesdddpsdppespdddsdseedsesssd

psdppespdddpdesdeddseesdssd dd psdppespdddpdesde�

eedddsesssesepddddsdesesd dd psdppespdddsdseedse�

sssessddpdss

eeeeeeeeeeeeeeeeeeee

pdsedsdedsssss

ssssss

dtdsddddseesddddstdsddpdesdeddseesd

pdddsdesss

sdeddeseeepdddsedsee

gggggggggggggggggggggg

ggggggggggggggggg

tggtgggttgttggggggggtgttggggg

rsesdss

dtgggtgttgggggddgggdggd

dggdtggggtddgggdggd

ssesssesepddddsdesesdddddddss

sesepsdppespddddddddddss

gggggtlttglgdddggggggt

gglgdglttglgdddggggggt

ggtggtlttglgdddggggggt

sedddsesssesepddddsdesesdddddddss

rerreerrerreereer

eeesdesds

pdddsdesss

dggtgggggggggggggggg

gggggggggggggggggggggg

ggggggggggggggggg

tggtgggttgttggggggggtgttggggg

rsesdss

dtgggtgttgggggddgggdggd

dggdtggggtddgggdggd

gggggtlttglgdddggggggt

gglgdglttglgdddggggggt

ggtggtlttglgdddggggggt

epsdppespddddsdss

Figure A.4: Full class diagram of the Interaction namespace.

106

rrrrrrrrrrrrr

ssssssssssssss

ssssss

rsssssrssrsrrsssssssrrrsssssrs

rsssrss

ssssrr)ss))ss))

rrrrrrrrrrrrrrrr

ssssrr)ss))ss

sssss

ssssss

rsssssrssrsrrsssssssrrrsssssrs

ssrrrs)sss)ss)srsssrs)srss

rsssrss

sssssssrr)ss))ss))

rsssssssrsrsrssrrss))srsrssrrss

rssrsssssssrsrsrssrrss))srsrssrrss

rssrsrrrssrrss))srsrssrrss

)ssrsssrsrr)ss)sssrssrrss))s rs rss�

rssrssrrssrrss))srsrssrrss

rssrsssssrsrsrssrrss))srsrssrrss

)ssrsrarsrr)ss)sssrssrrss))s rs rss�

ss)sss)ss)srssddssrsss))srsdrss

rrssssdssr)rsdss))srsdrss

rrrrrrrrrrrrrrrrrrr

ssssrr)ss))ss

sssss

ssssss

srrrrrsrssrsrrssrsrsrsrrrssss

rssdsrtsdttssssrsdttsss

sssssrrsrssrsrrsrs

tsdssrsrssrstrdssrsrs

rsrrssssss

rss))ssrrtrsrsssrrsrsrrtrsrsssrr

rss))ssgsgsssrrsrsssssr)

rsrss))sr)srssrrs

rsssrss

stssrsssssrr)ss))ss))

snsssssrrtrsrsssrr))srsrrtrsrsssrr

rrtssdrsss))srsdrss

rrtssdssds))srsdrss

rssdssarss)drsss))srsdrss

rssdssarss)dssds))srsdrss

rssdssarss)gdss))srsdrss

rssdssarsrr))srsdrss

rssdssarrtssdstsdtssrrrrar))srsdrss

rssdssarrtssrrds))srsdrss

rssssrss)))srsdrss

rrrrrrrrrrrrrrrrrrrr

ssssrr)ss))ss

sssss

ssssss

ssrsssrss)srssrrs

srsrsrsrrsr

sssrsrssrssssrsarsrdssrsrs

sstsrrtssdtssrrrrarsrssrrs

sssr)rsdsssrsrrtssrssstssdssr)rsdss

rsssrss

rssstssssssrr)ss))ss))

dtssdsrrssrtsrss)rsrssss))srsdrss

sssr)rsdssdrssstssdssr)rsdss))srsdrss

Figure A.5: Full class diagram of the Trigger namespace.

107

B Tables

GUI MUI

Single input stream Multiple input streams

Atomic, deterministic Continuous, probabilistic

Sequential processing Parallel processing

Centralised architectures Distributed & time-sensitive architectures

Table B.1: The differences betweeen GUIs and MUIs in juxtaposition taken from [DLO09].

Element Description

Cursor The term cursor is used to denote the location designator for triggered actions. It
can be either a graphical cursor visible on the screen, like a mouse cursor, or an
invisible cursor, like when using a finger to point at something.

Pickable Marks an abstract or concrete component as valid target for pick actions.

Droppable Marks an abstract or concrete component as valid target for a drop action.

Information item An information item is anything that can be picked up and dropped using the
Metamorph interaction concept. It can range from a simple text to an image to a
video, to name a few examples. An information item is pickable.

Slot A slot represents a storage unit for a single information item. A slot is droppable.

Metamorph clipboard The Metamorph clipboard is the globally available storage for the picked up
information items, offering slots in which information items can be stored.
Although the storage itself is invisible, it is made visible through audio feedback
and GUI components that are described later.

Table B.2: Overview of the basic elements and terms that are used to define the Metamorph
interaction concept.

109

B Tables

Action Description

Pick Store the information item picked up from ObjectID in the clipboard slot with SlotID, the
next slot that is free or the slot that was least recently used.

Required data: <DeviceID, ComponentID, ObjectID, InformationID, [SlotID]>

Drop Drop the dragged information item into the designated UI object with ObjectID, initiating a
transfer of the information to a droppable UI object.

Required data: <DeviceID, ComponentID, ObjectID, InformationID>

Select Mark the information item stored in the clipboard slot identified by SlotID as selected.

Required data: <SlotID>

Deselect Unmark the information item stored in the clipboard identified by SlotID as selected.

Required data: <SlotID>

ClearSlot Clears the slot identified by SlotID by removing the information item it contains from the
clipboard. If no SlotID is given, the item in the selected slot will be removed by default.

Required data: <SlotID>

ClearUiComp
onent

Clear the source UI component with ObjectID, making the drop a cut instead of copy.

Required data: <DeviceID, ComponentID, ObjectID>

Table B.3: Overview of the basic actions defining the Metamorph interaction concept.

110

Input method Steps to trigger 'pick'

Mouse (GUI) 1. Click on the desired item with left mouse button
2. Hold the click and start dragging the item

i. The Metamorph ring appears
3. Release the click over a slot

Mouse (gesture) 1. Click on the desired item with left mouse button
2. Hold the click and start dragging the item
3. Perform a swipe gesture to the top

i. The item will appear in a slot in the Metamorph dock

Keyboard 1. Select the desired item
2. Press Control (ctrl) + x for cut or ctrl + c for copy

i. The item will appear in a slot in the Metamorph dock

Touch (GUI) 1. Long touch on the desired item
i. The item will be visually 'picked up'
i. The Metamorph ring appears

2. Release the touch over a slot

Touch (gesture) 1. Select the desired item
i. Item will be visually selected

2. Perform a swipe gesture to the top
i. The item will appear in a slot in the Metamorph dock

Android (GUI) 1. Long touch on the desired item
i. The item will be visually 'picked up'
ii. The Metamorph app appears after a short delay without moving

3. Release the touch over a slot
i. The Metamorph app disappears and the last visible app is shown

again

Android (gesture) 1. Select the desired item
i. Item will be visually selected

2. Perform a swipe gesture to the top
i. A notification confirms picking up the item

Voice 1. "Pick «selection» [up]", "Take «selection»", "Collect
«selection»"
i. Some auditive or visual feedback confirms the pick-up

Body gesture 1. Point on item
i. Item will be visually selected

2. Perform a swipe gesture to the top
i. The item will appear in a slot in the Metamorph dock

Table B.4: A detailed description of all the actions needed to perform the pick action using
all input methods.

111

B Tables

Input method Steps to trigger 'drop'

Mouse (GUI) 1. Click with the left mouse button on the desired item
2. Hold the click and start dragging the item
3. Release the click over the desired location to drop the item

Mouse (gesture) 1. Click and hold the left mouse button
2. Perform a swipe gesture to the bottom

i. The item in the selected slot appears at the cursor
3. Release the click over the desired target location to drop the item

i. Perform shaking gesture to cancel the drag

Keyboard 1. Press ctrl + v
i. The item in the selected slot will be dropped at the cursor's current

location

Touch (GUI) 1. Long touch on the desired item
i. The item will be visually 'picked up'

2. Release the touch over the desired target location to drop the item

Touch (gesture) 1. Perform a swipe gesture to the bottom
i. The item in the selected slot appears at the finger's position

2. Release the touch over the desired target location to drop the item
i. Perform shaking gesture to cancel the drag

Android (GUI) 1. Open the Metamorph App
2. Select the desired item
3. Long touch on the desired item

i. The item will be visually 'picked up'
ii. The Metamorph app disappears and the last visible app is shown

again
4. Release the touch over the desired target location to drop the item

i. Perform shaking gesture to cancel the drag

Android (gesture) 1. Perform a swipe gesture to the bottom
i. The item in the selected slot appears at the finger's position

2. Release the touch over the desired target location to drop the item
i. Perform shaking gesture to cancel the drag

Voice 1. "Drop [selection] at «ObjectID»", "Put [selection] into «ObjectID»"

Body gesture 1. Point at the desired target location
i. The cursor appears at the desired target location

1. Perform a swipe gesture to the bottom
i. The selected items are dropped at the cursors' location

Table B.5: A detailed description of all the actions needed to perform the drop action using
all input methods.

112

Input method Steps to trigger 'select' and 'deselect'

Mouse (GUI) 1. Click with the left mouse button on an item
i. If the item is deselected it will be selected
ii. If the item is selected it will be deselected

Alternative
1. Rightclick and select 'Metamorph ring' from the context menu

i. The Metamorph ring appears
2. Click to select or deselect as described before

Mouse (gesture) 1. Perform a circle gesture
i. The Metamorph ring appears

2. Click to select or deselect as described under 'Mouse (GUI)'

Keyboard 1. Press Alternative (alt) + Tab until the dock is focussed
2. Use the arrow keys to focus the desired item
3. Press spacebar or enter

i. If the item is deselected it will be selected
ii. If the item is selected it will be deselected

Alternative
1. Press ctrl + r

i. The Metamorph ring appears
2. Select or deselect using the keyboard as described before

Touch (GUI) 1. Touch on a deselected item
i. The item becomes selected

2. Touch on a selected item
i. The item becomes deselected

Touch (gesture) 1. Perform a circle gesture
i. The Metamorph ring appears

2. Click to select or deselect as described under 'Touch (GUI)'

Android (GUI) 1. Touch on a deselected item
i. The item becomes selected

2. Touch on a selected item
i. The item becomes deselected

Android (gesture) 3. Perform a circle gesture
i. The Metamorph app appears

4. Click to select or deselect as described under 'Android (GUI)'

Voice "What is in the clipboard?", "What have I picked up?", "Show [me the]
contents of the clipboard"

Current Selection
"What [item] is [currently] selected?", "Show|Tell me the selection"

Change selection
"Select|deselect slot «ID»", "Select|deselect «position, like
first, second, etc.» item", "Select|deselect item in slot «ID»"

Body gesture 1. Point upwards with the index finger
2. Perform a circle gesture with the fingertip

i. The Metamorph ring appears
3. Point for a defined number of seconds on an item to select or deselect

the item as described under 'Touch (GUI)'

Table B.6: A detailed description of the actions needed to perform the select or deselect
action using all input methods.

113

B Tables

Output modality Feedback

Visual Pick: • Item appears at the dock in a slot

Drag: • Icon of the picked up item is shown at the cursor

Drop: • Item appears at the drop location
• A plus icon appears at the cursor when the drop

will be a copy

Item selected: • Frame and background of the selected slot
become hightlighted with a colour

Item deselected: • Frame and background of the deselected slots
become as usual

Clipboard contents: • Metamorph dock (global)
• Metamorph ring (local)

Selected item: • Frame and background of the selected slot is
highlighted with colour

Representations
supported by the items:

• Small general icons below the item's icon that
represent text, image, text-to-speech, audio and
video representations

• Detailed tooltip information on mouse over slot

Valid drop targets: • Coloured frame around possible drop targets

Auditive Pick: • A specific sound with increasing tone height to
imply a upward movement

Drag: —

Drop: • A specific sound with decreasing tone height to
imply a downward movement

Item selected: • A selection sound

Item deselected: • A deselection sound

Clipboard contents: • Enumeration of all items by TTS

Selected item: • Description of the selected item by TTS

Representations
supported by the items:

• Enumeration of the modalities for a specific
given item

Valid drop targets: • Enumeration of all possible drop targets' names
by TTS

Table B.7: A detailed description of the actions needed to perform the drop action using a
set of input concepts.

114

Bibliography

[AK10] ANUSUYA, M. A. ; KATTI, S. K.: Speech Recognition by Machine, A Review. In:

CoRR abs/1001.2267 (2010)

[BB00] BARRY BRUMITT, Brian Meyers Steven S. John Krumm K. John Krumm: Ubiq-

uitous computing and the role of geometry. In: IEEE Personal Communications

7 (2000), S. 41–43

[Bol80] BOLT, Richard A.: "Put-that-there": Voice and gesture at the graphics interface.

In: Proceedings of the 7th annual conference on Computer graphics and inter-

active techniques. New York, NY, USA : ACM, 1980 (SIGGRAPH ’80). – ISBN

0–89791–021–4, 262–270

[BP04] BANDELLONI, Renata ; PATERNÒ, Fabio: Migratory user interfaces able to adapt

to various interaction platforms. In: Int. J. Hum.-Comput. Stud. 60 (2004), Nr.

5-6, 621-639. http://dblp.uni-trier.de/db/journals/ijmms/ijmms60.

html#BandelloniP04

[BP05] BERTI, Silvia ; PATERNÒ, Fabio: Migratory MultiModal interfaces in MultiDe-

vice environments. In: Proceedings of the 7th international conference on

Multimodal interfaces. New York, NY, USA : ACM, 2005 (ICMI ’05). – ISBN

1–59593–028–0, 92–99

[CWC05] CLERCKX, Tim ; WINTERS, Frederik ; CONINX, Karin: Tool support for designing

context-sensitive user interfaces using a model-based approach. In: Proceed-

ings of the 4th international workshop on Task models and diagrams. New York,

NY, USA : ACM, 2005 (TAMODIA ’05). – ISBN 1–59593–220–8, 11–18

[DLO09] DUMAS, Bruno ; LALANNE, Denis ; OVIATT, Sharon: Multimodal Interfaces:

A Survey of Principles, Models and Frameworks. Version: 2009. http:

//dx.doi.org/10.1007/978-3-642-00437-7_1. In: LALANNE, Denis (Hrsg.)

; KOHLAS, Jörg (Hrsg.): Human Machine Interaction. Berlin, Heidelberg :

115

http://dblp.uni-trier.de/db/journals/ijmms/ijmms60.html#BandelloniP04
http://dblp.uni-trier.de/db/journals/ijmms/ijmms60.html#BandelloniP04
http://dx.doi.org/10.1007/978-3-642-00437-7_1
http://dx.doi.org/10.1007/978-3-642-00437-7_1

Bibliography

Springer-Verlag, 2009. – ISBN 978–3–642–00436–0, Kapitel Multimodal In-

terfaces: A Survey of Principles, Models and Frameworks, 3-26

[FWW11] FINDLATER, Leah ; WOBBROCK, Jacob O. ; WIGDOR, Daniel: Typing on flat

glass: examining ten-finger expert typing patterns on touch surfaces. In: Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems.

New York, NY, USA : ACM, 2011 (CHI ’11). – ISBN 978–1–4503–0228–9,

2453–2462

[HDS12] HOSTE, Lode ; DUMAS, Bruno ; SIGNER, Beat: SpeeG: a multimodal speech-

and gesture-based text input solution. In: Proceedings of the International

Working Conference on Advanced Visual Interfaces. New York, NY, USA : ACM,

2012 (AVI ’12). – ISBN 978–1–4503–1287–5, 156–163

[HSW12] HONOLD, Frank ; SCHÜSSEL, Felix ; WEBER, Michael: Adaptive probabilistic fis-

sion for multimodal systems. In: Proceedings of the 24th Australian Computer-

Human Interaction Conference. New York, NY, USA : ACM, 2012 (OzCHI ’12).

– ISBN 978–1–4503–1438–1, 222–231

[HSW+13] HONOLD, Frank ; SCHÜSSEL, Felix ; WEBER, Michael ; NOTHDURFT, Florian ;

BERTRAND, Gregor ; MINKER, Wolfgang: Context Models for Adaptive Dialogs

and Multimodal Interaction, 2013 (Intelligent Environments)

[Kab10] KABRT, Lukas: Mouse Gestures for .NET. As seen on: 22.07.2013. http:

//mousegestures.codeplex.com/. Version: March 2010

[KI07] KOBAYASHI, Masatomo ; IGARASHI, Takeo: Boomerang: Suspendable drag-

and-drop interactions based on a throw-and-catch metaphor. In: Proceedings

of the 20th annual ACM symposium on User interface software and technology.

New York, NY, USA : ACM, 2007 (UIST ’07). – ISBN 978–1–59593–679–0,

187–190

[Mar99] MARTIN, J.C.: TYCOON: six primitive types of cooperation for observing, evalu-

ating and specifying cooperations. In: AAAI Technical Report FS-99-03 (1999)

[Med07] MEDERO, Shawn: Paper Prototyping. alistapart.com, as seen on: 20.05.2013.

http://alistapart.com/article/paperprototyping. Version: January

2007

[Mil56] MILLER, George: The Magical Number Seven, Plus or Minus Two: Some Limits

on Our Capacity for Processing Information. http://cogprints.org/730/.

116

http://mousegestures.codeplex.com/
http://mousegestures.codeplex.com/
http://alistapart.com/article/paperprototyping
http://cogprints.org/730/

Bibliography

Version: 1956. – One of the 100 most influential papers in cognitive science:

http://cogsci.umn.edu/millennium/final.html

[MM99] MILLER, Robert C. ; MYERS, Brad A.: Synchronizing clipboards of multiple

computers. In: Proceedings of the 12th annual ACM symposium on User inter-

face software and technology. New York, NY, USA : ACM, 1999 (UIST ’99). –

ISBN 1–58113–075–9, 65–66

[MSB91] MACKENZIE, I. S. ; SELLEN, Abigail ; BUXTON, William A. S.: A comparison of

input devices in element pointing and dragging tasks. In: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. New York, NY,

USA : ACM, 1991 (CHI ’91). – ISBN 0–89791–383–3, 161–166

[Mye98] MYERS, Brad A.: A brief history of human-computer interaction technology.

In: interactions 5 (1998), März, Nr. 2, 44–54. http://dx.doi.org/10.1145/

274430.274436. – DOI 10.1145/274430.274436. – ISSN 1072–5520

[Nie00] NIELSEN, Jakob: Why You Only Need to Test with 5 Users.

As seen on: 21.08.2013. http://www.nngroup.com/articles/

why-you-only-need-to-test-with-5-users/. Version: March 2000

[Nor02] NORMAN, Donald A.: The Design of Everyday Things. Reprint Paperback. New

York : Basic Books, 2002. – ISBN 0–465–06710–7

[Ovi03] OVIATT, Sharon: The human-computer interaction handbook. Version: 2003.

http://dl.acm.org/citation.cfm?id=772072.772093. In: JACKO, Julie A.

(Hrsg.) ; SEARS, Andrew (Hrsg.): The human-computer interaction handbook.

Hillsdale, NJ, USA : L. Erlbaum Associates Inc., 2003. – ISBN 0–8058–3838–4,

Kapitel Multimodal interfaces, 286–304

[Pap13] Paper prototyping. Wikipedia, as seen on: 20.05.2013. http://en.

wikipedia.org/wiki/Paper_prototyping. Version: March 2013

[Pet10] PETRASCH, Roland: Model based user interface development with HCI pat-

terns: variatio delectat. In: Proceedings of the 1st International Workshop on

Pattern-Driven Engineering of Interactive Computing Systems. New York, NY,

USA : ACM, 2010 (PEICS ’10). – ISBN 978–1–4503–0246–3, 10–11

[PKH08] PARK, In-Kwon ; KIM, Jung-Hyun ; HONG, Kwang-Seok: An implementation of

an FPGA-based embedded gesture recognizer using a data glove. In: Proceed-

ings of the 2nd international conference on Ubiquitous information management

117

http://dx.doi.org/10.1145/274430.274436
http://dx.doi.org/10.1145/274430.274436
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://dl.acm.org/citation.cfm?id=772072.772093
http://en.wikipedia.org/wiki/Paper_prototyping
http://en.wikipedia.org/wiki/Paper_prototyping

Bibliography

and communication. New York, NY, USA : ACM, 2008 (ICUIMC ’08). – ISBN

978–1–59593–993–7, 496–500

[Ram03] RAMAN, T. V.: User Interface Principles For Multimodal Interac-

tion. http://www.cim.mcgill.ca/~jer/courses/hci/ref/mmi-position.

html. Version: 2003

[Rek97] REKIMOTO, Jun: Pick-and-drop: A direct manipulation technique for multiple

computer environments. In: Proceedings of the 10th annual ACM symposium

on User interface software and technology. New York, NY, USA : ACM, 1997

(UIST ’97). – ISBN 0–89791–881–9, 31–39

[SDD12] SONG, Yale ; DEMIRDJIAN, David ; DAVIS, Randall: Continuous body and hand

gesture recognition for natural human-computer interaction. New York, NY, USA

: ACM, März 2012. – ISSN 2160–6455, 5:1–5:28

[Seb09] SEBE, Nicu: Multimodal interfaces: Challenges and perspectives. In: J. Ambi-

ent Intell. Smart Environ. 1 (2009), Januar, Nr. 1, 23–30. http://dl.acm.org/

citation.cfm?id=1735821.1735824. – ISSN 1876–1364

[SEM] SEMAINE Trac system. As seen on: 19.07.2013. http://semaine.opendfki.

de/

[SER09] STOLEE, Kathryn T. ; ELBAUM, Sebastian ; ROTHERMEL, Gregg: Revealing

the copy and paste habits of end users. In: Proceedings of the 2009 IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC).

Washington, DC, USA : IEEE Computer Society, 2009 (VLHCC ’09). – ISBN

978–1–4244–4876–0, 59–66

[SGP00] SILVA, Paulo Pinheiro d. ; GRIFFITHS, Tony ; PATON, Norman W.: Generating

user interface code in a model based user interface development environment.

In: Proceedings of the working conference on Advanced visual interfaces. New

York, NY, USA : ACM, 2000 (AVI ’00). – ISBN 1–58113–252–2, 155–160

[SSR13] SEIFERT, Julian ; SCHNEIDER, Dennis ; RUKZIO, Enrico: Extending Mobile

Interfaces with External Screens. In: In Proc. of Interact 2013 (IFIP TC13 Con-

ference on Human-Computer Interaction), Springer, 8 pages., 2013

[SSRG12] SCHMIDT, Dominik ; SEIFERT, Julian ; RUKZIO, Enrico ; GELLERSEN, Hans: A

cross-device interaction style for mobiles and surfaces. In: Proceedings of the

118

http://www.cim.mcgill.ca/~jer/courses/hci/ref/mmi-position.html
http://www.cim.mcgill.ca/~jer/courses/hci/ref/mmi-position.html
http://dl.acm.org/citation.cfm?id=1735821.1735824
http://dl.acm.org/citation.cfm?id=1735821.1735824
http://semaine.opendfki.de/
http://semaine.opendfki.de/

Bibliography

Designing Interactive Systems Conference. New York, NY, USA : ACM, 2012

(DIS ’12). – ISBN 978–1–4503–1210–3, 318–327

[Twa] http://www.addictedtocoffee.de

[VC04] VANDERVELPEN, Chris ; CONINX, Karin: Towards model-based design support

for distributed user interfaces. In: Proceedings of the third Nordic conference

on Human-computer interaction. New York, NY, USA : ACM, 2004 (NordiCHI

’04). – ISBN 1–58113–857–1, 61–70

[Vel09] VELLIS, George: Model-based development of synchronous collaborative user

interfaces. In: Proceedings of the 1st ACM SIGCHI symposium on Engineering

interactive computing systems. New York, NY, USA : ACM, 2009 (EICS ’09). –

ISBN 978–1–60558–600–7, 309–312

[VLM+04] VANDERDONCKT, Jean ; LIMBOURG, Quentin ; MICHOTTE, Benjamin ; BOUIL-

LON, Laurent ; TREVISAN, Daniela ; FLORINS, Murielle: UsiXML: a User In-

terface Description Language for Specifying Multimodal User Interfaces. In:

Proceedings of W3C Workshop on Multimodal Interaction WMI’2004. Sophia

Antipolis, Juli 2004, S. 35–42

[WCO95] WAGNER, Annette ; CURRAN, Patrick ; O’BRIEN, Robert: Drag me, drop me,

treat me like an object. In: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. New York, NY, USA : ACM Press/Addison-

Wesley Publishing Co., 1995 (CHI ’95). – ISBN 0–201–84705–1, 525–530

[Wei95] WEISER, Mark: The computer for the 21st century. Version: 1995. http:

//dl.acm.org/citation.cfm?id=212925.213017. In: BAECKER, Ronald M.

(Hrsg.) ; GRUDIN, Jonathan (Hrsg.) ; BUXTON, William A. S. (Hrsg.) ; GREEN-

BERG, Saul (Hrsg.): Human-computer interaction. San Francisco, CA, USA :

Morgan Kaufmann Publishers Inc., 1995. – ISBN 1–55860–246–1, Kapitel The

computer for the 21st century, 933–940

[Wik13a] Clipboard (computing). Wikipedia, as seen on: 3.09.2013. http://en.

wikipedia.org/wiki/Clipboard_(computing). Version: July 2013

[Wik13b] Cut, copy, and paste. Wikipedia, as seen on: 3.06.2013. http://en.

wikipedia.org/wiki/Copy_and_paste. Version: August 2013

[Wik13c] Drag and drop. Wikipedia, as seen on: 3.09.2013. http://en.wikipedia.

org/wiki/Drag_and_drop. Version: August 2013

119

http://www.addictedtocoffee.de
http://dl.acm.org/citation.cfm?id=212925.213017
http://dl.acm.org/citation.cfm?id=212925.213017
http://en.wikipedia.org/wiki/Clipboard_(computing)
http://en.wikipedia.org/wiki/Clipboard_(computing)
http://en.wikipedia.org/wiki/Copy_and_paste
http://en.wikipedia.org/wiki/Copy_and_paste
http://en.wikipedia.org/wiki/Drag_and_drop
http://en.wikipedia.org/wiki/Drag_and_drop

Bibliography

[Wik13d] Media (communication). Wikipedia, as seen on: 3.06.2013. http://en.

wikipedia.org/wiki/Media_(communication). Version: May 2013

[Wik13e] Modality (human-computer interaction). Wikipedia, as seen on: 26.05.2013.

http://en.wikipedia.org/wiki/Modality_(human%E2%80%93computer_

interaction). Version: April 2013

[Wik13f] Siri. Wikipedia, as seen on: 2.09.2013. http://en.wikipedia.org/wiki/

Siri. Version: September 2013

[WLD08] WITT, Hendrik ; LAWO, Michael ; DRUGGE, Mikael: Visual feedback and dif-

ferent frames of reference: the impact on gesture interaction techniques for

wearable computing. In: Proceedings of the 10th international conference on

Human computer interaction with mobile devices and services. New York, NY,

USA : ACM, 2008 (MobileHCI ’08). – ISBN 978–1–59593–952–4, 293–300

[ZNK10] ZHANG, Rui ; NORTH, Stephen ; KOUTSOFIOS, Eleftherios: A comparison of

speech and GUI input for navigation in complex visualizations on mobile de-

vices. In: Proceedings of the 12th international conference on Human computer

interaction with mobile devices and services. New York, NY, USA : ACM, 2010

(MobileHCI ’10). – ISBN 978–1–60558–835–3, 357–360

120

http://en.wikipedia.org/wiki/Media_(communication)
http://en.wikipedia.org/wiki/Media_(communication)
http://en.wikipedia.org/wiki/Modality_(human%E2%80%93computer_interaction)
http://en.wikipedia.org/wiki/Modality_(human%E2%80%93computer_interaction)
http://en.wikipedia.org/wiki/Siri
http://en.wikipedia.org/wiki/Siri

Name: Michael Barth Matrikelnummer: 748890

Erklärung

Ich erkläre, dass ich die Arbeit selbständig verfasst und keine anderen als die angegebenen

Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Michael Barth

Picture Credits

The file icons used in figure 3.5 are freeware and were created by Oliver Twardowski [Twa].

All images used in the concept art and screenshots of the Metamorph app, dock and ring

(see figures 3.9, 3.7 and 3.8, amongst others) were found using the Google Image Search

and are the property of their respective owners.

The green apple was taken from: http://iran-banner.com/

The keikogi was taken from: http://www.budovideos.com/

The Spaceballs cover was taken from: http://covers.box.sk/

Spaceballs: The Movie is copyrighted by Metro-Goldwyn-Mayer Studios Inc., all rights re-

served.

The Uni Ulm logo was taken from: http://www.uni-ulm.de/

The icons used in the dock prototype (see figure 4.13) were found on the website of

http://www.findicons.com/ and are property of their respective owners.

The red trash bin was created by: http://bombiadesign.com/

123

	Introduction
	Motivation
	Problem Statement
	Objective
	Approach
	Outline

	Fundamentals
	Interaction Fundamentals
	Human-Computer Interaction
	Common Input & Output Concepts
	Input Concepts
	Output Concepts

	Related Interaction Concepts
	Cut, Copy, and Paste
	The Clipboard
	Drag & Drop
	Pick-and-Drop
	Gestures

	Ubiquitous Computing

	Multimodal User Interfaces
	Architectural Overview
	Fusion
	Dialog Management
	Fission
	Context Management
	Advantages

	State of the Art in Multimodal Interaction Technology
	Adaptable User Interfaces
	Migratory User Interfaces
	Model-based User Interface Generation
	Differentiation

	Existing System
	Architectural Overview
	SEMAINE API

	Interaction Concept
	Scope
	Objectives
	Requirements
	Limitations

	Scenario
	Metamorph Interaction Concept
	Basic Concept
	Abstract Interaction Concept
	Data Transfer Mode
	Nominators

	Abstract Components
	Concrete Components
	Voice User Interface (VUI)
	Multimodal User Interfaces

	Modality Mappings
	Feedback
	Transitions

	Paper Prototype
	Procedure
	Results

	Interim Conclusion

	Prototypical Implementation
	Existing System
	User Interface
	Dialog & Interaction Output
	Dialog & Interaction Input
	SEMAINE Components

	Extending the Existing System
	Audio Support
	Grid View
	Mouse Gesture Support
	Dialog & Interaction Input

	System Design
	Synchronisation
	Storage
	Metamorph Runtime
	Interaction
	Graphical User Interface (GUI)
	Voice User Interface (VUI)
	Summary

	Implementation
	Synchronisation
	Storage
	Interaction
	Action Trigger

	The Dock Concept for Graphical User Interfaces
	Extending the Dialog and Interaction Output for Pick-and-Drop

	Interim Conclusion

	Evaluation
	Participants
	Test Setup
	Procedure
	Statements of the Experts
	Visibility
	Multimodality
	Transient Media Types
	Hierarchical Information
	Dynamic Nominators
	Interaction
	Generally Important Aspects
	Extending the Interaction Output

	Interim Conclusion

	Summary and Future Work
	Class Diagrams
	Tables
	Bibliography
	Picture Credits

